Magnitude and Spatial Distribution of Impact Intensity Under the Foot Relates to Initial Foot Contact Pattern

in Journal of Applied Biomechanics

Click name to view affiliation

Bastiaan BreineGhent University

Search for other papers by Bastiaan Breine in
Current site
Google Scholar
PubMed
Close
*
,
Philippe MalcolmGhent University

Search for other papers by Philippe Malcolm in
Current site
Google Scholar
PubMed
Close
*
,
Veerle SegersGhent University

Search for other papers by Veerle Segers in
Current site
Google Scholar
PubMed
Close
*
,
Joeri GerloGhent University

Search for other papers by Joeri Gerlo in
Current site
Google Scholar
PubMed
Close
*
,
Rud DerieGhent University

Search for other papers by Rud Derie in
Current site
Google Scholar
PubMed
Close
*
,
Todd PatakyShinshu University

Search for other papers by Todd Pataky in
Current site
Google Scholar
PubMed
Close
*
,
Edward C. FrederickExeter Research, Inc.

Search for other papers by Edward C. Frederick in
Current site
Google Scholar
PubMed
Close
*
, and
Dirk De ClercqGhent University

Search for other papers by Dirk De Clercq in
Current site
Google Scholar
PubMed
Close
*
Restricted access

In running, foot contact patterns (rear-, mid-, or forefoot contact) influence impact intensity and initial ankle and foot kinematics. The aim of the study was to compare impact intensity and its spatial distribution under the foot between different foot contact patterns. Forty-nine subjects ran at 3.2 m·s−1 over a level runway while ground reaction forces (GRF) and shoe-surface pressures were recorded and foot contact pattern was determined. A 4-zone footmask (forefoot, midfoot, medial and lateral rearfoot) assessed the spatial distribution of the vertical GRF under the foot. We calculated peak vertical instantaneous loading rate of the GRF (VILR) per foot zone as the impact intensity measure. Midfoot contact patterns were shown to have the lowest, and atypical rearfoot contact patterns the highest impact intensities, respectively. The greatest local impact intensity was mainly situated under the rear- and midfoot for the typical rearfoot contact patterns, under the midfoot for the atypical rearfoot contact patterns, and under the mid- and forefoot for the midfoot contact patterns. These findings indicate that different foot contact patterns could benefit from cushioning in different shoe zones.

Breine, Malcolm, Segers, Gerlo, Derie, and De Clercq are with the Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium. Pataky is with the Department of Bioengineering, Shinshu University, Matsumoto, Nagano, Japan. Frederick is with the Exeter Research Inc., Brentwook, NH, USA.

Address author correspondence to Bastiaan Breine at bastiaan.breine@ugent.be.
  • Collapse
  • Expand
  • 1.

    Di Michele R , Merni F . The concurrent effect of strike pattern and ground-contact time on running economy. J Sci Med Sport. 2014;17:414418. PubMed doi:10.1016/j.jsams.2013.05.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ogueta-Alday A , Rodríguez-Marroyo JA , García-López J . Rearfoot striking runners are more economical than midfoot strikers. Med Sci Sports Exerc. 2014;46(3):580585. PubMed doi:10.1249/MSS.0000000000000139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Breine B , Malcolm P , Frederick EC , De Clercq D . Relationship between running speed and initial foot contact patterns. Med Sci Sports Exerc. 2014;46(8):15951603. PubMed doi:10.1249/MSS.0000000000000267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Boyer ER , Rooney BD , Derrick TR . Rearfoot and midfoot or forefoot impacts in habitually shod runners. Med Sci Sports Exerc. 2014;46(7):13841391. PubMed doi:10.1249/MSS.0000000000000234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Milner CE , Ferber R , Pollard CD , Hamill J , Davis IS . Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323328. PubMed doi:10.1249/01.mss.0000183477.75808.92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Shorten M , Mientjes MIV . The “heel impact” force peak during running is neither “heel” nor “impact” and does not quantify shoe cushioning effects. Footwear Sci. 2011;3(1):4158. doi:10.1080/19424280.2010.542186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Zadpoor AA , Nikooyan AA . The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech. 2011;26(1):2328. doi:10.1016/j.clinbiomech.2010.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gerritsen KG , van den Bogert AJ , Nigg BM . Direct dynamics simulation of the impact phase in heel-toe running. J Biomech. 1995;28(6):661668. PubMed doi:10.1016/0021-9290(94)00127-P

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lieberman DE , Venkadesan M , Werbel WA , et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531535. PubMed doi:10.1038/nature08723

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    De Clercq D , Aerts P , Kunnen M . The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study. J Biomech. 1994;27(10):12131222. PubMed doi:10.1016/0021-9290(94)90275-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Breine B , Malcolm P , Van Caekenberghe I , Fiers P , Frederick EC , De Clercq D . Initial foot contact and related kinematics affect impact loading rate in running. J Sports Sci. 2016;13:19. doi:10.1080/02640414.2016.1225970

    • Search Google Scholar
    • Export Citation
  • 12.

    Kernozek TW , Meardon S , Vannatta CN . In-shoe loading in rearfoot and non-rearfoot strikers during running using minimalist footwear. Int J Sports Med. 2014;35:11121117. PubMed doi:10.1055/s-0034-1372627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kernozek TW , Vannatha CN , Gheidi N , Krause S , Aminaka N . Plantar loading changes with alterations in foot strike patterns during a single session in habitual rear foot strike female runners. Phys Ther Sport. 2016;18:3237. PubMed doi:10.1016/j.ptsp.2015.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Becker J , Howey RJ , Osternig L , James S , Chou L . Plantar pressure differences between rearfoot and midfoot striking runners during shod running. Poster presented at: The 2012 ASB Annual Meeting; 2012; Gainesville, FL.

    • Search Google Scholar
    • Export Citation
  • 15.

    Pohl MB , Buckley JG . Changes in foot and shank coupling due to alterations in foot strike pattern during running. Clin Biomech. 2008;23(3):334341. doi:10.1016/j.clinbiomech.2007.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cavanagh P , Lafortune M . Ground reaction forces in distance running. J Biomech. 1980;13:397406. PubMed

  • 17.

    Pataky TC , Keijsers NLW , Goulermas JY , Crompton RH . Nonlinear spatial warping for between-subjects pedobarographic image registration. Gait Posture. 2009;29(3):477482. PubMed doi:10.1016/j.gaitpost.2008.11.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Azevedo AP , Brandina K , Bianco R , et al. Effects of replica running shoes upon external forces and muscle activity during running. J Sports Sci. 2012;30(9):929935. PubMed doi:10.1080/02640414.2012.682080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Chambon N , Delattre N , Berton E , Gueguen N , Rao G . The effect of shoe drop on running pattern. Footwear Sci. 2013;16(S1):9798. doi:10.1080/19424280.2013.799585

    • Search Google Scholar
    • Export Citation
  • 20.

    Nigg BM , Bahlsen HA , Luethi SM , Stokes S . The influence of running velocity and midsole hardness on external impact forces in heel-toe running. J Biomech. 1987;20(10):951959. PubMed doi:10.1016/0021-9290(89)90081-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gruber AH , Davis IS , Hamill J . Frequency content of the vertical ground reaction force component during rearfoot and forefoot running patterns. Med Sci Sports Exerc. 2011;43(S1):60. doi:10.1249/01.MSS.0000402852.25234.f0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Addison BJ , Lieberman DE . Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J Biomech. 2015;48:13181324. PubMed doi:10.1016/j.jbiomech.2015.01.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    ASTM F1976 – 13: Standard test method for impact attenuation of athletic shoe cushioning systems and materials. http://www.astm.org/Standards/F1976.htm. Accessed July 16, 2015

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2334 973 100
Full Text Views 35 9 0
PDF Downloads 29 6 0