Intratrunk Coordination During High-Effort Treadmill Running in Individuals With Spinal Fusion for Adolescent Idiopathic Scoliosis

in Journal of Applied Biomechanics
View More View Less
  • 1 California State University, Chico
  • 2 Ithaca College
  • 3 University of Georgia
  • 4 University of Mississippi
  • 5 Pediatric Orthopaedic Associates
  • 6 Oregon State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The purpose of the study was to determine if the intratrunk coordination of axial rotation exhibited by individuals with spinal fusion for adolescent idiopathic scoliosis (SF-AIS) during running varies from healthy individuals and how the coordination differs among adjacent trunk-segment pairs. Axial rotations of trunk segments (upper, middle, lower trunk) and pelvis were collected for 11 SF-AIS participants and 11 matched controls during running. Cross-correlation determined the phase lag between the adjacent segment motions. The coupling angle was generated using the vector coding method and classified into 1 of the 4 major, modified coordination patterns: in-phase, anti-phase, superior, and inferior phase. Two-way, mixed-model ANCOVA was employed to test phase lag, cross-correlation r, and time spent in each major coordination pattern. A significantly lower phase lag for SF-AIS was observed compared with controls. Qualitatively, there was a tendency that SF-AIS participants spent less time in anti-phase for middle-lower trunk and lower trunk-pelvis coordinations compared to controls. Phase lag and anti-phase time was significantly increased from cephalic to caudal segment pairs, regardless of group. In conclusion, SF-AIS participants and controls displayed similar patterns of intra-trunk coordination; however, the spinal fusion hindered decoupling of intra-trunk motions particularly between the lower trunk-pelvic motion.

Li is with the Department of Kinesiology, California State University, Chico, CA. Kakar is with the Department of Physical Therapy, Ithaca College, Ithaca, NY. Walker and Simpson are with the Department of Kinesiology, University of Georgia, Athens, GA. Fu is with the Department of Health, Exercise Science & Recreation Management, University of Mississippi, Oxford, MS. Oswald is with Pediatric Orthopaedic Associates, Atlanta, GA. Brown is with the Department of Athletic Training and Kinesiology, Oregon State University, Corvallis, OR.

Address author correspondence to Yumeng Li at yli41@csuchico.edu.
  • 1.

    Reamy BV, Slakey JB. Adolescent idiopathic scoliosis: review and current concepts. Am Fam Physician. 2001;64(1):111116. PubMed

  • 2.

    Udoekwere UI, Krzak JJ, Graf A, et al. Effect of lowest instrumented vertebra on trunk mobility in patients with adolescent idiopathic scoliosis undergoing a posterior spinal fusion. Spine Deform. 2014;2(4):291300. PubMed doi:10.1016/j.jspd.2014.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Pao JL, Yang RS, Hsiao CH, Hsu WL. Trunk control ability after minimally invasive lumbar fusion surgery during the early postoperative phase. J Phys Ther Sci. 2014;26(8):11651171. PubMed doi:10.1589/jpts.26.1165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    de Abreu DC, Gomes MM, de Santiago HA, Herrero CF, Porto MA, Defino HL. What is the influence of surgical treatment of adolescent idiopathic scoliosis on postural control? Gait Posture. 2012;36(3):586590. PubMed doi:10.1016/j.gaitpost.2012.05.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    de Santiago HA, Reis JG, Gomes MM. The influence of vision and support base on balance during quiet standing in patients with adolescent idiopathic scoliosis before and after posterior spinal fusion. Spine J. 2013;13(11):14701476. PubMed doi:10.1016/j.spinee.2013.03.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Pasha S, Aubin CE, Labelle H, Parent S, Mac-Thiong JM. The biomechanical effects of spinal fusion on the sacral loading in adolescent idiopathic scoliosis. Clin Biomech (Bristol, Avon). 2015;30(9):981987. doi:10.1016/j.clinbiomech.2015.06.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Skalli W, Zeller RD, Miladi L, et al. Importance of pelvic compensation in posture and motion after posterior spinal fusion using CD instrumentation for idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(12):359366. doi:10.1097/01.brs.0000219402.01636.87

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Engsberg JR, Lenke LG, Uhrich ML, Ross SA, Bridwell KH. Prospective comparison of gait and trunk range of motion in adolescents with idiopathic thoracic scoliosis undergoing anterior or posterior spinal fusion. Spine (Phila Pa 1976). 2003;28(17):19932000. doi:10.1097/01.BRS.0000087209.34602.42

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kakar RS, Li Y, Fu YC, Brown C, Simpson KJ. Spine kinematics exhibited during running by adolescent idiopathic scoliosis patients with spinal fusion. Spine J. 2015;15(10):S177. doi:10.1016/j.spinee.2015.07.217

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kakar RS, Li Y, Fu Y, Brown CN, Oswald T, Simpson KJ. Sagittal plane spine kinematics during stop-jump of individuals with adolescent idiopathic scoliosis post surgical fusion of spine. Proceedings of 25th Congress of the International Society of Biomechanics; 2015; Glasgow, UK.

    • Export Citation
  • 11.

    Li Y, Kakar RS, Fu Y, Oswald T, Simpson KJ. Pelvis and lower extremity kinematics during treadmill running exhibited by individuals with spinal fusion for adolescent idiopathic scoliosis. Paper presented at: World Congress of Biomechanics; 2014; Bosten, MA.

    • Export Citation
  • 12.

    Park HJ, Sim T, Suh SW, Yang JH, Koo H, Mun JH. Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. Eur spine J. 2016;25(2):385393. PubMed doi:10.1007/s00586-015-3931-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Herr H, Popovic M. Angular momentum in human walking. J Exp Biol. 2008;211:467481. PubMed doi:10.1242/jeb.008573

  • 14.

    Hinrichs RN. Upper extremity function in running. II: angular momentum considerations. Int J Sport Biomech. 1987;3(3):242263. doi:10.1123/ijsb.3.3.242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gracovetsky S. The spine as a motor in sports: application to running and lifting. In: Hochschuler SH, ed. The Spine in Sports. Vol. 10. Philadelphia, PA: Hanley & Belfus; 1990:1130.

    • Search Google Scholar
    • Export Citation
  • 16.

    Temprado J, Della-Grasta M, Farrell M, Laurent M. A novice-expert comparison of (intra-limb) coordination subserving the volleyball serve. Hum Mov Sci. 1997;16(5):653676. doi:10.1016/S0167-9457(97)00014-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Li Y, Alexander M, Glazebrook C, Leiter J. Quantifying inter-segmental coordination during the instep soccer kicks. Int J Exerc Sci. 2016;9(5):646656. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Chang R, Van Emmerik R, Hamill J. Quantifying rearfoot-forefoot coordination in human walking. J Biomech. 2008;41(14):31013105. PubMed doi:10.1016/j.jbiomech.2008.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Needham R, Naemi R, Chockalingam N. Quantifying lumbar-pelvis coordination during gait using a modified vector coding technique. J Biomech. 2014;47(5):10201026. PubMed doi:10.1016/j.jbiomech.2013.12.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Needham R, Naemi R, Chockalingam N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J Biomech. 2015;48(12):35063511. PubMed doi:10.1016/j.jbiomech.2015.07.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83-A(8):11691181. doi:10.2106/00004623-200108000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed doi:10.1249/00005768-198205000-00012

  • 23.

    Bell AL, Brand RA, Pedersen DR. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8(1):316. doi:10.1016/0167-9457(89)90020-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Shum GL, Crosbie J, Lee RY. Symptomatic and asymptomatic movement coordination of the lumbar spine and hip during an everyday activity. Spine (Phila Pa 1976). 2005;30(23):E697E702. doi:10.1097/01.brs.0000188255.10759.7a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wong TK, Lee RY. Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Hum Mov Sci. 2004;23(1):2134. PubMed doi:10.1016/j.humov.2004.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hamill J, Haddad JM, McDermott WJ. Issues in quantifying variability from a dynamical systems perspective. J Appl Biomech. 2000;16(4):407418. doi:10.1123/jab.16.4.407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Ivry R, Diedrichsen J, Spencer R, Hazeltine E, Semjen A. A cognitive neuroscience perspective on bimanual coordination and interference. In: Swinnen SP, Duysens J, eds. Neuro-Behavioral Determinants of Interlimb Coordination: A Multidisciplinary Approach. Boston, MA: Springer US; 2004:259295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Weinhoffer SL, Guyer RD, Herbert M, Griffith SL. Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976). 1995;20(5):526531. doi:10.1097/00007632-199503010-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Parsch D, Gartner V, Brocai DR, Carstens C, Schmitt H. Sports activity of patients with idiopathic scoliosis at long-term follow-up. Clin J Sport Med. 2002;12(2):9598. PubMed doi:10.1097/00042752-200203000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 207 161 17
Full Text Views 12 9 0
PDF Downloads 5 4 0