Foot and Ankle Kinematics During Descent From Varying Step Heights

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Wisconsin-Milwaukee
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

In the general population, one-third of incidences during step negotiation occur during the transition to level walking. Furthermore, falls during curb negotiation are a common cause of injury in older adults. Distal foot kinematics may be an important factor in determining injury risk associated with transition step negotiation. The purpose of this study was to identify foot and ankle kinematics of uninjured individuals during descent from varying step heights. A 7-segment foot model was used to quantify kinematics as participants walked on a level walkway, stepped down a single step (heights: 5 cm, 15 cm, 25 cm), and continued walking. As step height increased, landing strategy transitioned from the rearfoot to the forefoot, and the rearfoot, lateral and medial midfoot, and medial forefoot became more plantar flexed. During weight acceptance, sagittal plane range of motion of the rearfoot, lateral midfoot, and medial and lateral forefoot increased as step height increased. The changes in landing strategy and distal foot function suggest a less stable ankle position at initial contact and increased demand on the distal foot at initial contact and through the weight acceptance phase of transition step negotiation as step height increases.

Gerstle, O’Connor, Keenan, and Cobb are with the Musculoskeletal Injury Biomechanics Laboratory, Department of Kinesiology, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI.

Address author correspondence to Emily E. Gerstle at egerstle@uwm.edu.
  • 1.

    Waterman BR , Owens BD , Davey S , Zacchilli MA , Belmont PJ Jr . The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am. 2010;92(13):22792284. PubMed doi:10.2106/JBJS.I.01537.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Templer JA , Mullet GM , Archea J , Margulis ST . An Analysis of the Behavior of Stair Users. Washington, DC: US Government Printing Office; 1978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Duckham RL , Procter-Gray E , Hannan MT , Leveille SG , Lipsitz LA , Li W . Sex differences in circumstances and consequences of outdoor and indoor falls in older adults in the MOBILIZE Boston cohort study. BMC Geriatr. 2013;13(1):133. PubMed doi:10.1186/1471-2318-13-133.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hubbard TJ , Wikstrom EA . Ankle sprain: pathophysiology, predisposing factors, and management strategies. Open Access J Sports Med. 2010;1:115122. PubMed doi:10.2147/OAJSM.S9060.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Dommes A , Lay TL , Vienne F , Dang N-T , Beaudoin AP , Do MC . Towards an explanation of age-related difficulties in crossing a two-way street. Accid Anal Prev. 2015;85:229238. PubMed doi:10.1016/j.aap.2015.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    McFadyen BJ , Winter DA . An integrated biomechanical analysis of normal stair ascent and descent. J Biomech. 1988;21(9):733744. PubMed doi:10.1016/0021-9290(88)90282-5.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Protopapadaki A , Drechsler WI , Cramp MC , Coutts FJ , Scott OM . Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin Biomech. 2007;22(2):203210. PubMed doi:10.1016/j.clinbiomech.2006.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Zachazewski JE , Riley PO , Krebs DE . Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects. J Rehabil Res Dev. 1993;30(4):412422. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Andriacchi TP , Andersson GB , Fermier RW , Stern D , Galante JO . A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am. 1980;62(5):749757. PubMed doi:10.2106/00004623-198062050-00008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mian OS , Thom JM , Narici MV , Baltzopoulos V . Kinematics of stair descent in young and older adults and the impact of exercise training. Gait Posture. 2007;25(1):917. PubMed doi:10.1016/j.gaitpost.2005.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Yu B , Kienbacher T , Growney ES , Johnson ME , An KN . Reproducibility of the kinematics and kinetics of the lower extremity during normal stair-climbing. J Orthop Res. 1997;15(3):348352. PubMed doi:10.1002/jor.1100150306.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Freedman W , Kent L. Selection of movement patterns during functional tasks in humans. J Mot Behav. 1987;19(2):214226. PubMed doi:10.1080/00222895.1987.10735408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lundgren P , Nester C , Liu A , et al. Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture. 2008;28(1):93100. PubMed doi:10.1016/j.gaitpost.2007.10.009.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Nester CJ , Liu AM , Ward E , et al. In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech. 2007;40(9):19271937. PubMed doi:10.1016/j.jbiomech.2006.09.008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cobb SC , Tis LL , Johnson JT , Wang YT , Geil MD , McCarty FA . The effect of low-mobile foot posture on multi-segment medial foot model gait kinematics. Gait Posture. 2009;30(3):334339. PubMed doi:10.1016/j.gaitpost.2009.06.005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rao S , Baumhauer JF , Tome J , Nawoczenski DA . Comparison of in vivo segmental foot motion during walking and step descent in patients with midfoot arthritis and matched asymptomatic control subjects. J Biomech. 2009;42(8):10541060. PubMed doi:10.1016/j.jbiomech.2009.02.006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    McKeon PO , Fourchet F . Freeing the foot: integrating the foot core system into rehabilitation for lower extremity injuries. Clin Sports Med. 2015;34(2):347361. PubMed doi:10.1016/j.csm.2014.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    McKeon PO , Hertel J , Bramble D , Davis I . The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49(5):290. PubMed doi:10.1136/bjsports-2013-092690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bennell KL , Talbot RC , Wajswelner H , Techovanich W , Kelly DH , Hall AJ . Intra-rater and inter-rater reliability of a weight-bearing lunge measure of ankle dorsiflexion. Aust J Physiother. 1998;44(3):175180. PubMed doi:10.1016/S0004-9514(14)60377-9.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hiller CE , Refshauge KM , Bundy AC , Herbert RD , Kilbreath SL . The Cumberland ankle instability tool: a report of validity and reliability testing. Arch Phys Med Rehabil. 2006;87(9):12351241. PubMed doi:10.1016/j.apmr.2006.05.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hiller CE , Kilbreath SL , Refshauge KM . Chronic ankle instability: evolution of the model. J Athl Train. 2011;46(2):133141. PubMed doi:10.4085/1062-6050-46.2.133.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Beneficial Designs, Axelson PW , Chesney DA , et al.  Designing Sidewalks and Trails for Access. Part I of II: Review of Existing Guidelines and Practices. Washington, DC: US Department of Transportation Federal Highway Administration; 1999.

    • Search Google Scholar
    • Export Citation
  • 23.

    International Code Council. 2015 International Building Code. Chapter 10: Means of Egress. Washington, DC: ICC; 2015.

  • 24.

    Cobb SC , Joshi MN , Bauer RL , Klinkner TR . A multi-segment foot model based on in-vivo and in-vitro stereophotogrammetric studies and clinical theories of dynamic foot function: Walking gait reliability. Paper presented at the American Society of Biomechanics Annual Meeting, Long Beach, CA. 2011.

    • Search Google Scholar
    • Export Citation
  • 25.

    Cobb SC , Joshi MN , Pomeroy RL . Reliability of a seven-segment foot model with medial and lateral midfoot and forefoot segments during walking gait. J Appl Biomech. 2016;32(6):608613. PubMed doi:10.1123/jab.2015-0262.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cappozzo A . Gait analysis methodology. Human Movement Science. 1984;3:2750. doi:10.1016/0167-9457(84)90004-6.

  • 27.

    Cole GK , Nigg BM , Ronsky JL , Yeadon MR . Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. J Biomech Eng. 1993;115(4A):344349. PubMed doi:10.1115/1.2895496.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Grood ES , Suntay WJ . A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136144. PubMed doi:10.1115/1.3138397.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    van Dieen JH , Pijnappels M . Effects of conflicting constraints and age on strategy choice in stepping down during gait. Gait Posture. 2009;29(2):343345. PubMed doi:10.1016/j.gaitpost.2008.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lythgo N , Begg R , Best R . Stepping responses made by elderly and young female adults to approach and accommodate known surface height changes. Gait Posture. 2007;26(1):8289. PubMed doi:10.1016/j.gaitpost.2006.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Buckley JG , Jones SF , Johnson L . Age-differences in the free vertical moment during step descent. Clin Biomech (Bristol, Avon). 2010;25(2):147153. PubMed doi:10.1016/j.clinbiomech.2009.10.008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Buckley JG , MacLellan MJ , Tucker MW , Scally AJ , Bennett SJ . Visual guidance of landing behaviour when stepping down to a new level. Exp Brain Res. 2008;184(2):223232. PubMed doi:10.1007/s00221-007-1096-8.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Fujii T , Kitaoka HB , Luo ZP , Kura H , An KN . Analysis of ankle-hindfoot stability in multiple planes: an in vitro study. Foot Ankle Int. 2005;26(8):633637. PubMed doi:10.1177/107110070502600810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Arnold JB , Mackintosh S , Jones S , Thewlis D . Differences in foot kinematics between young and older adults during walking. Gait Posture. 2014;39(2):689694. PubMed doi:10.1016/j.gaitpost.2013.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Spink MJ , Fotoohabadi MR , Menz HB . Foot and ankle strength assessment using hand-held dynamometry: reliability and age-related differences. Gerontology. 2010;56(6):525532. PubMed doi:10.1159/000264655.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 696 511 37
Full Text Views 19 14 4
PDF Downloads 5 4 0