Errors Associated With Utilizing Prescribed Scapular Kinematics to Estimate Unconstrained, Natural Upper Extremity Motion in Musculoskeletal Modeling

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Musculoskeletal modeling is capable of estimating physiological parameters that cannot be directly measured, however, the validity of the results must be assessed. Several models utilize a scapular rhythm to prescribe kinematics, yet it is unknown how well they replicate natural scapular motion. This study evaluated kinematic errors associated with a model that employs a scapular rhythm using 2 shoulder movements: abduction and forward reach. Two versions of the model were tested: the original MoBL ARMS model that utilizes a scapular rhythm, and a modified MoBL ARMS model that permits unconstrained scapular motion. Model estimates were compared against scapulothoracic kinematics directly measured from motion capture. Three-dimensional scapulothoracic resultant angle errors associated with the rhythm model were greater than 10° for abduction (mean: 16.4°, max: 22.4°) and forward reach (mean: 11.1°, max: 16.5°). Errors generally increased with humerothoracic elevation with all subjects reporting greater than 10° differences at elevations greater than 45°. Errors associated with the unconstrained model were less than 10°. Consequently, use of the original MoBL ARMS model is cautioned for applications requiring precise scapulothoracic kinematics. These findings can help determine which research questions are suitable for investigation with these models and assist in contextualizing model results.

Richardson, Rapp, Quinton, Nicholson, Higginson, and Richards are with the Biomechanics and Movement Science Program, University of Delaware, Newark, DE. Richardson is also with the Kinesiology Program, School of Behavioral Sciences and Education, Penn State Harrisburg, Middletown, PA. Knarr is with Delaware Rehabilitation Institute, University of Delaware, Newark, DE. Russo is with the University of Pittsburgh Medical Center Hamot Hospital, Erie, PA. Higginson is also with the Department of Mechanical Engineering, University of Delaware, Newark, DE. Richards is also with the Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE.

Address author correspondence to R. Tyler Richardson at rtr12@psu.edu.
  • 1.

    Delp SL , Anderson FC , Arnold AS , et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–1950. PubMed doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Pandy MG . Computer modeling and simulation of human movement. Annu Rev Biomed Eng. 2001;3:245–273. PubMed doi:10.1146/annurev.bioeng.3.1.245

  • 3.

    Bolsterlee B , Veeger DH , Chadwick EK . Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Med Biol Eng Comput. 2013;51(9):953–963. PubMed doi:10.1007/s11517-013-1099-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Holzbaur KR , Murray WM , Delp SL . A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 2005;33(6):829–840. PubMed doi:10.1007/s10439-005-3320-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    de Groot JH , Brand R . A three-dimensional regression model of the shoulder rhythm. Clin Biomech (Bristol, Avon). 2001;16(9):735–743. doi:10.1016/S0268-0033(01)00065-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Inman V , Abbott L . Observations of the function of the shoulder joint. J Bone Joint Surg. 1944;26(1):1–30.

  • 7.

    Saul KR , Hu X , Goehler CM , et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Eng. 2015;18(13):1445–1458. PubMed doi:10.1080/10255842.2014.916698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Charlton IW , Johnson GR . A model for the prediction of the forces at the glenohumeral joint. Proc Inst Mech Eng H. 2006;220(8):801–812. doi:10.1243/09544119JEIM147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Karlsson D , Peterson B . Towards a model for force predictions in the human shoulder. J Biomech. 1992;25(2):189–199. PubMed doi:10.1016/0021-9290(92)90275-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Blana D , Hincapie JG , Chadwick EK , Kirsch RF . A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. J Biomech. 2008;41(8):1714–1721. PubMed doi:10.1016/j.jbiomech.2008.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    van Andel C , van Hutten K , Eversdijk M , Veeger D , Harlaar J . Recording scapular motion using an acromion marker cluster. Gait Posture. 2009;29(1):123–128. PubMed doi:10.1016/j.gaitpost.2008.07.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lempereur M , Brochard S , Leboeuf F , Rémy-Néris O . Validity and reliability of 3D marker based scapular motion analysis: a systematic review. J Biomech. 2014;47(10):2219–2230. PubMed doi:10.1016/j.jbiomech.2014.04.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Karduna AR , McClure PW , Michener LA , Sennett B . Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng. 2001;123(2):184–190. PubMed doi:10.1115/1.1351892

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Meskers CG , van de Sande MA , de Groot JH . Comparison between tripod and skin-fixed recording of scapular motion. J Biomech. 2007;40(4):941–946. PubMed doi:10.1016/j.jbiomech.2006.02.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wu G , van der Helm FC , Veeger HE , et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981–992. PubMed doi:10.1016/j.jbiomech.2004.05.042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gordon C , Churchill T , Clauser C , et al. 1988 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics. Natick, MA: United States Army Natick Research, Development and Engineering Center; 1989.

    • Search Google Scholar
    • Export Citation
  • 17.

    Woltring HJ , Huiskes R , de Lange A , Veldpaus FE . Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech. 1985;18(5):379–389. PubMed doi:10.1016/0021-9290(85)90293-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dancey CP , Reidy J . Statistics Without Maths for Psychology. 5th ed. Upper Saddle River, NJ:Prentice Hall; 2011.

  • 19.

    Hicks J . Simulation with OpenSim—Best practices. 2012. +http://simtk-confluence.stanford.edu:8080/display/OpenSim/Simulation+with+OpenSim+-+Best+Practices.

    • PubMed
    • Export Citation
  • 20.

    Lempereur M , Brochard S , Mao L , Rémy-Néris O . Validity and reliability of shoulder kinematics in typically developing children and children with hemiplegic cerebral palsy. J Biomech. 2012;45(11):2028–2034. PubMed doi:10.1016/j.jbiomech.2012.05.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Brochard S , Lempereur M , Rémy-Néris O . Accuracy and reliability of three methods of recording scapular motion using reflective skin markers. Proc Inst Mech Eng H. 2011;225(1):100–105. PubMed doi:10.1243/09544119JEIM830

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Brochard S , Lempereur M , Rémy-Néris O . Double calibration: an accurate, reliable and easy-to-use method for 3D scapular motion analysis. J Biomech. 2011;44(4):751–754. PubMed doi:10.1016/j.jbiomech.2010.11.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Duprey S , Billuart F , Sah S , et al. Three-dimensional rotations of the scapula during arm abduction: evaluation of the Acromion marker cluster method in comparison with a model-based approach using Biplanar radiograph images. J Appl Biomech. 2015;31(5):396–402. PubMed doi:10.1123/jab.2014-0244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Prinold J , Shaheen A , Bull A . Skin-fixed scapula trackers: a comparison of two dynamic methods across a range of calibration positions. J Biomech. 2011;44(10):2004–2007. PubMed doi:10.1016/j.jbiomech.2011.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Warner MB , Chappell PH , Stokes MJ . Measuring scapular kinematics during arm lowering using the acromion marker cluster. Hum Mov Sci. 2012;31(2):386–396. PubMed doi:10.1016/j.humov.2011.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chu Y , Akins J , Lovalekar M , Tashman S , Lephart S , Sell T . Validation of a video-based motion analysis technique in 3-D dynamic scapular kinematic measurements. J Biomech. 2012;45(14):2462–2466. PubMed doi:10.1016/j.jbiomech.2012.06.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bolsterlee B , Veeger HE , van der Helm FC . Modelling clavicular and scapular kinematics: from measurement to simulation. Med Biol Eng Comput. 2014;52(3):283–291. PubMed doi:10.1007/s11517-013-1065-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Seth A , Matias R , Veloso AP , Delp SL . A biomechanical model of the scapulothoracic joint to accurately capture scapular kinematics during shoulder movements. PLoS ONE. 2016;11(1):1–18. doi:10.1371/journal.pone.0141028

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 68 68 8
Full Text Views 6 6 1
PDF Downloads 6 6 2