Active Ankle Circumduction to Identify Mobility Deficits in Subacute Ankle Sprain Patients

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Assessment of ankle mobility is complex and of clinical relevance after an ankle sprain. This study develops and tests a biomechanical model to assess active ankle circumduction and its reliability. The model was then applied to compare individuals’ ankle mobility between injured and noninjured ankles after a sprain episode. Twenty patients with subacute unilateral ankle sprain were assessed at 4 weeks and 10 weeks after the injury. They underwent a clinical exam and an ankle circumduction test during which the kinematics were recorded with an optoelectronic device. A biomechanical model was applied to explore ankle kinematics. Reliability of the ankle circumduction tests were good to excellent (ICC of 0.55–0.89). Comparison between noninjured and injured ankles showed a mobility deficit of the injured ankle (dorsiflexion = −27.4%, plantar flexion = −25.9%, eversion = −27.2%, and inversion = −11.6%). The model allows a graphical representation of these deficits in 4 quadrants. Active ankle circumduction movement can be reliably assessed with this model. In addition, the graphical representation allows an easy understanding of the mobility deficits which were present in all 4 quadrants in our cohort of patients with subacute ankle sprain.

Theurillat, Armand, Bonnefoy-Mazure, and Allet are with Willy Taillard Laboratory of Kinesiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland. Punt and Allet are with the University of Applied Sciences of Western Switzerland, Geneva, Switzerland.

Address author correspondence to Clément Theurillat at clement.theurillat@unil.ch.
  • 1.

    Fong DT, Hong Y, Chan LK, Yung PS, Chan KM. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007;37(1):73–94. PubMed doi:10.2165/00007256-200737010-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kemler E, Van De Port I, Backx F, Van Dijk CN. A systematic review on the treatment of acute ankle sprain: brace versus other functional treatment types. Sports Med. 2011;41(3):185–197. PubMed doi:10.2165/11584370-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thacker SB, Stroup DF, Branche CM, Gilchrist J, Goodman RA, Weitman EA. The prevention of ankle sprains in sports. A systematic review of the literature. Am J Sports Med. 1999;27(6):753–760. PubMed doi:10.1177/03635465990270061201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Holme E, Magnusson SP, Becher K, Bieler T, Aagaard P, Kjær M. The effect of supervised rehabilitation on strength, postural sway, position sense and re-injury risk after acute ankle ligament sprain. Scand J Med Sci Sports. 1999;9(2):104–109. PubMed doi:10.1111/j.1600-0838.1999.tb00217.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    De Noronha M, Refshauge KM, Herbert RD, Kilbreath SL. Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain? Br J Sports Med. 2006;40(10):824–828. PubMed doi:10.1136/bjsm.2006.029645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lephart SM, Pincivero DM, Giraldo JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997;25(1):130–137. PubMed doi:10.1177/036354659702500126

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Liu W, Siegler S, Techner L. Quantitative measurement of ankle passive flexibility using an arthrometer on sprained ankles. Clin Biomech. 2001;16(3):237–244. doi:10.1016/S0268-0033(00)00088-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Kerkhoffs GM, Rowe BH, Assendelft WJ, Kelly KD, Struijs PA, Van Dijk CN. Immobilisation for acute ankle sprain. A systematic review. Arch Orthop Trauma Surg. 2001;121(8):462–471. PubMed doi:10.1007/s004020100283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lynch SA, Renström PA. Treatment of acute lateral ankle ligament rupture in the athlete: conservative versus surgical treatment. Sports Med. 1999;27(1):61–71. PubMed doi:10.2165/00007256-199927010-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kapandji IA. The Physiology of the Joints: The Lower Limb. Singapore: Elsevier; 2011.

  • 11.

    Leitch J, Stebbins J, Zavatsky AB. Subject-specific axes of the ankle joint complex. J Biomech. 2010;43(15):2923–2928. PubMed doi:10.1016/j.jbiomech.2010.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ying N, Kim W, Wong Y, Kam BH. Analysis of passive motion characteristics of the ankle joint complex using dual Euler angle parameters. Clin Biomech. 2004;19(2):153–160. doi:10.1016/j.clinbiomech.2003.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-Part I: ankle, hip, and spine. J Biomech. 2002;35(4):543–548. PubMed doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Barre A, Armand S. Biomechanical ToolKit: open-source framework to visualize and process biomechanical data. Comput Methods Programs Biomed. 2014;114(1):80–87. PubMed doi:10.1016/j.cmpb.2014.01.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–290. doi:10.1037/1040-3590.6.4.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–428. PubMed doi:10.1037/0033-2909.86.2.420

  • 17.

    Carson MC, Harrington ME, Thompson N, O’Connor JJ, Theologis TN. Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech. 2001;34(10):1299–1307. PubMed doi:10.1016/S0021-9290(01)00101-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Growney E, Meglan D, Johnson M, Cahalan T, An KN. Repeated measures of adult normal walking using a video tracking system. Gait Posture. 1997;6(2):147–162. doi:10.1016/S0966-6362(97)01114-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T. Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture. 2006;23(4):401–410. PubMed doi:10.1016/j.gaitpost.2005.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Denegar CR, Hertel J, Fonseca J. The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. J Orthop Sports Phys Ther. 2002;32(4):166–173. PubMed doi:10.2519/jospt.2002.32.4.166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Green T, Refshauge K, Crosbie J, Adams R. A randomized controlled trial of a passive accessory joint mobilization on acute ankle inversion sprains. Phys Ther. 2001;81(4):984–994. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Balduini FC, Vegso JJ, Torg JS, Torg E. Management and rehabilitation of ligamentous injuries to the ankle. Sports Med. 1987;4(5):364–380. PubMed doi:10.2165/00007256-198704050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gehrmann SV, Kaufmann RA, Li ZM. Wrist circumduction reduced by finger constraints. J Hand Surg Br. 2008;33(8):1287–1292. doi:10.1016/j.jhsa.2008.04.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Li ZM, Kuxhaus L, Fisk JA, Christophel TH. Coupling between wrist flexion-extension and radial-ulnar deviation. Clin Biomech. 2005;20(2):177–183. doi:10.1016/j.clinbiomech.2004.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Moseley AM, Crosbie J, Adams R. Normative data for passive ankle plantarflexion-dorsiflexion flexibility. Clin Biomech. 2001;16(6):514–521. doi:10.1016/S0268-0033(01)00030-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Wei F, Braman JE, Weaver BT, Haut RC. Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data. J Biomech. 2011;44(15):2636–2641. PubMed doi:10.1016/j.jbiomech.2011.08.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Leardini A, Chiari A, Della Croce U, Cappozzo A. Human movement analysis using stereophotogrammetry Part 3. Soft tissue artifact assessment and compensation. Gait Posture. 2005;21(2):212–225. PubMed doi:10.1016/j.gaitpost.2004.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Barton T, Lintz F, Winson I. Biomechanical changes associated with the osteoarthritic, arthrodesed, and prosthetic ankle joint. Foot Ankle Surg. 2011;17(2):52–57. PubMed doi:10.1016/j.fas.2011.01.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bishop C, Paul G, Thewlis D. Recommendations for the reporting of foot and ankle models. J Biomech. 2012;45(13):2185–2194. PubMed doi:10.1016/j.jbiomech.2012.06.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mariani B, Jiménez MC, Vingerhoets FJ, Aminian K. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Trans Biomed Eng. 2013;60(1):155–158. PubMed doi:10.1109/TBME.2012.2227317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 109 109 11
Full Text Views 3 3 1
PDF Downloads 0 0 0