Nonuniform Deformation of the Patellar Tendon During Passive Knee Flexion

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The purpose of this study was to evaluate localized patterns of patellar tendon deformation during passive knee flexion. Ultrasound radiofrequency data were collected from the patellar tendons of 20 healthy young adults during knee flexion over a range of motion of 50°–90° of flexion. A speckle tracking approach was used to compute proximal and distal tendon displacements and elongations. Nonuniform tissue displacements were visible in the proximal tendon (P < .001), with the deep tendon undergoing more distal displacement than the superficial tendon. In the distal tendon, more uniform tendon motion was observed. Spatial variations in percent elongation were also observed, but these varied along the length of the tendon (P < .002), with the proximal tendon remaining fairly isometric while the distal tendon underwent slight elongation. These results suggest that even during passive flexion the tendon undergoes complex patterns of deformation. Proximal tendon nonuniformity may arise from its complex anatomy where the deep tendon inserts onto the patella and the superficial tendon extends to the quadriceps tendon. Such heterogeneity is not captured in whole tendon average assessments, emphasizing the relevance of considering localized tendon mechanics, which may be key to understanding tendon behavior and precursors to injury and disease.

Slane, Bogaerts, and Scheys are with the Institute for Orthopaedic Research and Training, KU Leuven, Leuven, Belgium. Bogaerts and Scheys are also with the University Hospitals Leuven, Campus Pellenberg, Pellenberg, Belgium. Thelen is with the University of Wisconsin-Madison, Madison, WI.

Address author correspondence to Laura C. Slane at laura.c.slane@gmail.com.
  • 1.

    Hopkins C, Fu SC, Chua E, et al. Critical review on the socio-economic impact of tendinopathy. Asia-Pac J Sport Med Arthrosc Rehabil Technol. 2016;4:9–20. doi:10.1016/j.asmart.2016.01.002

    • Search Google Scholar
    • Export Citation
  • 2.

    Johnson DP, Wakeley CJ, Watt I. Magnetic resonance imaging of patellar tendonitis. J Bone Joint Surg Br. 1996;78-B(3):452–457.

  • 3.

    Martens M, Wouters P, Burssens A, Mulier JC. Patellar tendinitis: pathology and results of treatment. Acta Orthop Scand. 1982;53(3):445–450. PubMed doi:10.3109/17453678208992239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Yoo JH, Yi SR, Kim JH. The geometry of patella and patellar tendon measured on knee MRI. Surg Radiol Anat. 2007;29(8):623–628. PubMed doi:10.1007/s00276-007-0261-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Carroll CC, Dickinson JM, Haus JM, et al. Influence of aging on the in vivo properties of human patellar tendon. J Appl Physiol. 2008;105(6):1907–1915. PubMed doi:10.1152/japplphysiol.00059.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Basso O, Amis AA, Race A, Johnson DP. Patellar tendon fiber strains: their differential responses to quadriceps tension. Clin Orthop Relat Res. 2002;400:246–253. PubMed doi:10.1097/00003086-200207000-00030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Haraldsson BT, Aagaard P, Krogsgaard M, Alkjaer T, Kjaer M, Magnusson SP. Region-specific mechanical properties of the human patella tendon. J Appl Physiol. 2005;98(3):1006–1012. PubMed doi:10.1152/japplphysiol.00482.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Seynnes OR, Bojsen-Møller J, Albracht K, et al. Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol. 2015;118(2):133–141. PubMed doi:10.1152/japplphysiol.00849.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548(3):971–981. PubMed doi:10.1113/jphysiol.2002.035576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Mechanical properties of the patellar tendon in adults and children. J Biomech. 2010;43(6):1190–1195. PubMed doi:10.1016/j.jbiomech.2009.11.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kubo K, Teshima T, Hirose N, Tsunoda N. Growth changes in morphological and mechanical properties of human patellar tendon in vivo. J Appl Biomech. 2014;30(3):415–422. PubMed doi:10.1123/jab.2013-0220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Alegre LM, Hasler M, Wenger S, Nachbauer W, Csapo R. Does knee joint cooling change in vivo patellar tendon mechanical properties? Eur J Appl Physiol. 2016;116:1921–1929. PubMed doi:10.1007/s00421-016-3444-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pearson SJ, Burgess K, Onambele GN. Creep and the in vivo assessment of human patellar tendon mechanical properties. Clin Biomech. 2007;22(6):712–717. PubMed doi:10.1016/j.clinbiomech.2007.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kongsgaard M, Aagaard P, Roikjaer S, et al. Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats. Clin Biomech. 2006;21(7):748–754. PubMed doi:10.1016/j.clinbiomech.2006.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Chernak LA, Thelen DG. Tendon motion and strain patterns evaluated with two-dimensional ultrasound elastography. J Biomech. 2012;45(15):2618–2623. PubMed doi:10.1016/j.jbiomech.2012.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Korstanje J, Selles R, Henk S, Hovius S, Bosch J. Dedicated ultrasound speckle tracking to study tendon displacement. Proceedings of SPIE Medical Imaging 2009: Ultrasonic Imaging and Signal Processing; 2009. Lake Buena Vista, FL. doi:10.1117/12.811156

    • Export Citation
  • 17.

    Arndt A, Bengtsson AS, Peolsson M, Thorstensson A, Movin T. Non-uniform displacement within the Achilles tendon during passive ankle joint motion. Knee Surg Sport Traumatol Arthrosc. 2012;20(9):1868–1874. PubMed doi:10.1007/s00167-011-1801-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Slane LC, Thelen DG. Achilles tendon displacement patterns during passive stretch and ccentric loading are altered in middle-aged adults. Med Eng Phys. 2015;37(7):712–716. PubMed doi:10.1016/j.medengphy.2015.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HRC. Capacity for sliding between tendon fascicles decreases with ageing in injury prone equine tendons: a possible mechanism for age-related tendinopathy? Eur Cell Mater. 2013;25:48–60. PubMed doi:10.22203/eCM.v025a04

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Franz JR, Thelen DG. Depth-dependent variations in Achilles tendon deformations with age are associated with reduced plantarflexor performance during walking. J Appl Physiol. 2015;119(3):242–249. PubMed doi:10.1152/japplphysiol.00114.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fröberg Å, Cissé A, Larsson M, et al. Altered patterns of displacement within the Achilles tendon following surgical repair. Knee Surg Sport Traumatol Arthrosc. 2017;25(6):1857–1865. PubMed doi:10.1007/s00167-016-4394-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee D, Barrett R, Ryan M, Saxby DJ, Newsham-West R, Obst SJ. In vivo strain in the deep and superficial regions of the human patellar tendon. Scand J Med Sci Sports. 2017;27(10):1105–1113. PubMed doi:10.1111/sms.12721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pearson SJ, Ritchings T, Mohamed ASA. Regional strain variations in the human patellar tendon. Med Sci Sports Exerc. 2014;46(7):1343–1351. PubMed doi:10.1249/MSS.0000000000000247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Belvedere C, Ensini A, Feliciangeli A, et al. Geometrical changes of knee ligaments and patellar tendon during passive flexion. J Biomech. 2012;45(11):1886–1892. PubMed doi:10.1016/j.jbiomech.2012.05.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wilson D, Feikes J, Zavatsky A, O’Connor J. The components of passive knee movement are coupled to flexion angle. J Biomech. 2000;33(4):465–473. PubMed doi:10.1016/S0021-9290(99)00206-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ottoboni A, Parenti-Castelli V, Sancisi N, Belvedere C, Leardini A. Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment. Proc Inst Mech Eng Part H J Eng Med. 2010;224(9):1121–1132. PubMed doi:10.1243/09544119JEIM684

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Limbert G, Taylor M, Middleton J. Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL. J Biomech. 2004;37(11):1723–1731. PubMed doi:10.1016/j.jbiomech.2004.01.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Pioletti DP, Rakotomanana L, Benvenuti JF, et al. Finite element model of the human anterior cruciate ligament. In: Middleton J, Jones ML, Pande GN, ed. Computer Methods in Biomechanics & Biomedical Engineering-2. Amsterdam, The Netherlands: Gordon and Breach Science Publishers; 1998:561–568.

    • Search Google Scholar
    • Export Citation
  • 29.

    Defrate LE, Nha KW, Papannagari R, Moses JM, Gill TJ, Li G. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion. J Biomech. 2007;40(8):1716–1722. PubMed doi:10.1016/j.jbiomech.2006.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Visentini PJ, Khan KM, Cook JL, Kiss ZS, Harcourt PR, Wark JD. The VISA score: an index of severity of symptoms in patients with jumper’s knee (patellar tendinosis). Victorian Institute of Sport Tendon Study Group. J Sci Med Sport. 1998;1(1):22–28. PubMed doi:10.1016/S1440-2440(98)80005-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hawkins D, Lum C, Gaydos D, Dunning R. Dynamic creep and pre-conditioning of the Achilles tendon in-vivo. J Biomech. 2009;42(16):2813–2817. PubMed doi:10.1016/j.jbiomech.2009.08.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Slane LC, Bogaerts S, Mihejeva I, Scheys L. Evidence of patellar tendon buckling during passive knee extension. Knee. 2016;23:801–806. PubMed doi:10.1016/j.knee.2016.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374. PubMed doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol. 1999;521(1):307–313. PubMed doi:10.1111/j.1469-7793.1999.00307.x

  • 35.

    Slane LC, Thelen DG. The use of 2D ultrasound elastography for measuring tendon motion and strain. J Biomech. 2014;47(3):750–754. PubMed doi:10.1016/j.jbiomech.2013.11.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Zahiri Azar R, Goksel O, Salcudean SE. Sub-sample displacement estimation from digitized ultrasound RF signals using multi-dimensional polynomial fitting of the cross-correlation function. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(11):2403–2420. PubMed doi:10.1109/TUFFC.2010.1708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Thitaikumar A, Mobbs LM, Kraemer-Chant CM, Garra BS, Ophir J. Breast tumor classification using axial shear strain elastography: a feasibility study. Phys Med Biol. 2008;53(17):4809–4823. PubMed doi:10.1088/0031-9155/53/17/022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Slane LC, Thelen DG. Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading. J Biomech. 2014;47(12):2831–2835. PubMed doi:10.1016/j.jbiomech.2014.07.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Thorpe CT, Udeze CP, Birch HL, Clegg PD, Screen HRC. Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface. 2012;9:3108–3117. PubMed doi:10.1098/rsif.2012.0362http://rsif.royalsocietypublishing.org/content/early/2012/06/28/rsif.2012.0362.short. Accessed April 25, 2017.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Toumi H, Higashiyama I, Suzuki D, et al. Regional variations in human patellar trabecular architecture and the structure of the proximal patellar tendon enthesis. J Anat. 2006;208(1):47–57. PubMed doi:10.1111/j.1469-7580.2006.00501.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Arndt A, Bruggemann GP, Koebke J, Segesser B. Asymmetrical loading of the human triceps surae: I. Mediolateral force differences in the Achilles tendon. Foot Ankle Int. 1999;20(7):444–449. PubMed doi:10.1177/107110079902000709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Handsfield GG, Slane LC, Screen HRC. Nomenclature of the tendon hierarchy: an overview of inconsistent terminology and a proposed size-based naming scheme with terminology for multi-muscle tendons. J Biomech. 2016;49(13):3122–3124. PubMed doi:10.1016/j.jbiomech.2016.06.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Iriuchishima T, Shirakura K, Yorifuji H, Fu FH. Anatomical evaluation of the rectus femoris tendon and its related structures. Arch Orthop Trauma Surg. 2012;132(11):1665–1668. PubMed doi:10.1007/s00402-012-1597-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Basso O, Johnson DP, Amis AA. The anatomy of the patellar tendon. Knee Surg Sport Traumatol Arthrosc. 2001;9:2–5. PubMed doi:10.1007/s001670000133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Hansen P, Haraldsson BT, Aagaard P, et al. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology. J Appl Physiol. 2010;108(1):47–52. PubMed doi:10.1152/japplphysiol.00944.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Almekinders LC, Vellema JH, Weinhold PS. Strain patterns in the patellar tendon and the implications for patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2002;10(1):2–5. PubMed doi:10.1007/s001670100224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Garner BA, Pandy MG. Estimation of musculotendon properties in the human upper limb. Ann Biomed Eng. 2003;31(2):207–220. PubMed doi:10.1114/1.1540105

  • 48.

    Gejo R, Morita Y, Matsushita I, Sugimori K, Watanabe H, Kimura T. Intraoperative patellar tendon strain: predicting the range of knee flexion after total knee arthroplasty. J Orthop Sci. 2009;14(1):51–55. PubMed doi:10.1007/s00776-008-1286-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Lavagnino M, Arnoczky SP, Elvin N, Dodds J. Patellar tendon strain is increased at the site of the jumper’s knee lesion during knee flexion and tendon loading: results and cadaveric testing of a computational model. Am J Sports Med. 2008;36(11):2110–2118. PubMed doi:10.1177/0363546508322496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Couppé C, Hansen P, Kongsgaard M, et al. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol. 2009;107(3):880–886. PubMed doi:10.1152/japplphysiol.00291.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Hansen P, Bojsen-Moller J, Aagaard P, Kjaer M, Magnusson SP. Mechanical properties of the human patellar tendon, in vivo. Clin Biomech (Bristol, Avon). 2006;21(1):54–58. PubMed doi:10.1016/j.clinbiomech.2005.07.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Onambele GN, Burgess K, Pearson SJ. Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J Orthop Res. 2007;25(12):1635–1642. PubMed doi:10.1002/jor.20404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Couppé C, Kongsgaard M, Aagaard P, et al. Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol. 2008;105(3):805–810. PubMed doi 10.1152/japplphysiol.90361.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Kongsgaard M, Reitelseder S, Pedersen TG, et al. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol. 2007;191(2):111–121. PubMed doi:10.1111/j.1748-1716.2007.01714.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Helland C, Bojsen-Møller J, Raastad T, et al. Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy. Br J Sports Med. 2013;47(13):862–868. PubMed doi:10.1136/bjsports-2013-092275

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Couppé C, Kongsgaard M, Aagaard P, et al. Differences in tendon properties in elite badminton players with or without patellar tendinopathy. Scand J Med Sci Sports. 2013;23(2):89–95. PubMed doi:10.1111/sms.12023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Westh E, Kongsgaard M, Bojsen-Moller J, et al. Effect of habitual exercise on the structural and mechanical properties of human tendon, in vivo, in men and women. Scand J Med Sci Sports. 2007;18(1):23–30. PubMed doi:10.1111/j.1600-0838.2007.00638.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Couppé C, Suetta C, Kongsgaard M, et al. The effects of immobilization on the mechanical properties of the patellar tendon in younger and older men. Clin Biomech. 2012;27(9):949–954. PubMed doi:10.1016/j.clinbiomech.2012.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Svensson RB, Hansen P, Hassenkam T, et al. Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril. J Appl Physiol. 2012;112(3):419–426. PubMed doi:10.1152/japplphysiol.01172.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bojsen-Møller J, Magnusson SP. Heterogeneous loading of the human Achilles tendon in vivo. Exerc Sport Sci Rev. 2015;43(4):190–197. PubMed doi:10.1249/JES.0000000000000062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Thorpe CT, Klemt C, Riley GP, Birch HL, Clegg PD, Screen HR. Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return. Acta Biomater. 2013;9(8):7948–7956. PubMed doi:10.1016/j.actbio.2013.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HRC. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading. J R Soc Interface. 2014;11(92):20131058. PubMed doi:10.1098/rsif.2013.1058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Cheng VWT, Screen HRC. The micro-structural strain response of tendon. J Mater Sci. 2007;42(21):8957–8965. doi:10.1007/s10853-007-1653-3

  • 64.

    Screen HRC, Bader DL, Lee DA, Shelton JC. Local strain measurement within tendon. Strain. 2004;40(4):157–163. doi:10.1111/j.1475-1305.2004.00164.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Burgess KE, Pearson SJ, Breen L, Onambele GN. Tendon structural and mechanical properties do not differ between genders in a healthy community-dwelling elderly population. J Orthop Res. 2009;27(6):820–825. PubMed doi:10.1002/jor.20811

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 142 142 16
Full Text Views 1 1 0
PDF Downloads 0 0 0