Optimal Resistive Forces for Maximizing the Reliability of Leg Muscles’ Capacities Tested on a Cycle Ergometer

Click name to view affiliation

Amador García-Ramos University of Granada
Catholic University of the Most Holy Conception

Search for other papers by Amador García-Ramos in
Current site
Google Scholar
PubMed
Close
*
,
Alejandro Torrejón University of Granada

Search for other papers by Alejandro Torrejón in
Current site
Google Scholar
PubMed
Close
*
,
Antonio J. Morales-Artacho University of Granada

Search for other papers by Antonio J. Morales-Artacho in
Current site
Google Scholar
PubMed
Close
*
,
Alejandro Pérez-Castilla University of Granada

Search for other papers by Alejandro Pérez-Castilla in
Current site
Google Scholar
PubMed
Close
*
, and
Slobodan Jaric University of Delaware

Search for other papers by Slobodan Jaric in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study determined the optimal resistive forces for testing muscle capacities through the standard cycle ergometer test (1 resistive force applied) and a recently developed 2-point method (2 resistive forces used for force-velocity modelling). Twenty-six men were tested twice on maximal sprints performed on a leg cycle ergometer against 5 flywheel resistive forces (R1–R5). The reliability of the cadence and maximum power measured against the 5 individual resistive forces, as well as the reliability of the force-velocity relationship parameters obtained from the selected 2-point methods (R1–R2, R1–R3, R1–R4, and R1–R5), were compared. The reliability of outcomes obtained from individual resistive forces was high except for R5. As a consequence, the combination of R1 (≈175 rpm) and R4 (≈110 rpm) provided the most reliable 2-point method (CV: 1.46%–4.04%; ICC: 0.89–0.96). Although the reliability of power capacity was similar for the R1–R4 2-point method (CV: 3.18%; ICC: 0.96) and the standard test (CV: 3.31%; ICC: 0.95), the 2-point method should be recommended because it also reveals maximum force and velocity capacities. Finally, we conclude that the 2-point method in cycling should be based on 2 distant resistive forces, but avoiding cadences below 110 rpm.

García-Ramos, Torrejón, Morales-Artacho, and Pérez-Castilla are with the Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. García-Ramos is also with the Faculty of Education, CIEDE, Catholic University of the Most Holy Conception, Concepción, Chile. Jaric is with the Department of Kinesiology and Applied Physiology, Biomechanics and Movement Science Graduate Program, University of Delaware, Newark, DE.

Address author correspondence to Amador García-Ramos at amagr@ugr.es.
  • Collapse
  • Expand
  • 1.

    Driss T, Vandewalle H. The measurement of maximal (Anaerobic) power output on a cycle ergometer: a critical review. Biomed Res Int. 2013;2013:140. PubMed doi:10.1155/2013/589361

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Vandewalle H, Peres G, Monod H. Standard anaerobic exercise tests. Sports Med. 1987;4(4):268289. PubMed doi:10.2165/00007256-198704040-00004

  • 3.

    Pazin N, Bozic P, Bobana B, Nedeljkovic A, Jaric S. Optimum loading for maximizing muscle power output: the effect of training history. Eur J Appl Physiol. 2011;111(9):21232130. PubMed doi:10.1007/s00421-011-1840-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pirnay F, Crielaard JM. Mesure de la puissance anaérobie alactique. Méd Sport. 1979;53:1316.

  • 5.

    Jaafar H, Rouis M, Coudrat L, Attiogbé E, Vandewalle H, Driss T. Effects of load on wingate test performances and reliability. J Strength Cond Res. 2014;28(12):34623468. PubMed doi:10.1519/JSC.0000000000000575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Jaric S. Force-velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36(9):699704. PubMed doi:10.1055/s-0035-1547283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vandewalle H, Peres G, Heller J, Panel J, Monod H. Force-velocity relationship and maximal power on a cycle ergometer-Correlation with the height of a vertical jump. Eur J Appl Physiol Occup Physiol. 1987;56(6):650656. PubMed doi:10.1007/BF00424805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nakamura Y, Mutoh Y, Miyashita M. Determination of the peak power output during maximal brief pedalling bouts. J Sports Sci. 1985;3(3):181187. PubMed doi:10.1080/02640418508729750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Jaskólska A, Goossens P, Veenstra B, Jaskólski A, Skinner J. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output. Int J Sports Med. 1999;20(3):192197. PubMed doi:10.1055/s-1999-970288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jaric S. Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Med. 2016;46(11):15851589. PubMed doi:10.1007/s40279-016-0531-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dobrijevic S, Ilic V, Djuric S, Jaric S. Force-velocity relationship of leg muscles assessed with motorized treadmill tests: two-velocity method. Gait Posture. 2017;56:6064. PubMed doi:10.1016/j.gaitpost.2017.04.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Grbic V, Djuric S, Knezevic O, Mirkov D, Nedeljkovic A, Jaric S. A novel two-velocity method for elaborate isokinetic testing of knee extensors. Int J Sports Med. 2017;38(10):741746. PubMed doi:10.1055/s-0043-113043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pérez-Castilla A, García-Ramos A, Feriche B, Padial P, Jaric S. Reliability and validity of the ‘two-load method’ to determine leg extensors maximal mechanical capacities. In: Stomka K, Juras G, eds. Current Research in Motor Control V. Bridging Motor Control and Biomechanics. Katowice, Poland: BiuroTEXT; 2016:219225.

    • Search Google Scholar
    • Export Citation
  • 14.

    Zivkovic MZ, Djuric S, Cuk I, Suzovic D, Jaric S. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks. J Sports Sci. 2017;35(13):12871293. PubMed doi:10.1080/02640414.2016.1221521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Pérez-Castilla A, Jaric S, Feriche B, Padial P, García-Ramos A. Evaluation of muscle mechanical capacities through the two-load method: optimization of the load selection. J Strength Cond Res. 2017. In press. PubMed doi:10.1519/JSC.0000000000001969

    • Search Google Scholar
    • Export Citation
  • 16.

    Souissi N, Gauthier A, Sesboüé B, Larue J, Davenne D. Circadian rhythms in two types of anaerobic cycle leg exercise: force-velocity and 30-s wingate tests. Int J Sports Med. 2004;25(1):1419. PubMed doi:10.1055/s-2003-45226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Peveler WW, Pounders JD, Bishop PA. Effects of saddle height on anaerobic power production in cycling. J Strength Cond Res. 2007;21(4):10231027. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dorel S, Couturier A, Lacour JR, Vandewalle H, Hautier C, Hug F. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Med Sci Sports Exerc. 2010;42(6):11741183. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fulton SK, Pyne D, Hopkins W, Burkett B. Variability and progression in competitive performance of Paralympic swimmers. J Sports Sci. 2009;27(5):535539. PubMed doi:10.1080/02640410802641418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins W. Calculations for reliability (Excel spreedsheet). A new view of statistics. 2000. http://www.sportsci.org/resource/stats/relycalc.html. Accessed February 9, 2017.

    • Search Google Scholar
    • Export Citation
  • 23.

    García-Ramos A, Haff GG, Padial P, Feriche B. Optimal load for maximizing upper-body power: test-retest reliability. Isokinet Exerc Sci. 2016;24(2):115124. doi:10.3233/IES-150608

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2350 316 109
Full Text Views 74 35 0
PDF Downloads 40 12 0