Female Athletes With Varying Levels of Vertical Stiffness Display Kinematic and Kinetic Differences During Single-Leg Hopping

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Vertical stiffness may contribute to lower-extremity injury risk; however, it is unknown whether athletes with different stiffness levels display differences in biomechanics. This study compared differences in biomechanics between female athletes (n = 99) with varying stiffness levels during a repetitive, single-leg, vertical hopping task. Vertical stiffness was calculated as the ratio of peak vertical ground-reaction force to maximum center-of-mass displacement. Tertiles were established using stiffness values, and separate 1-way ANOVAs were used to evaluate between-group differences. Stance times decreased, and flight times, ground-reaction force, and stiffness increased, from the low- to high-stiffness group (P < .050). The high-stiffness group displayed: (1) greater lateral trunk flexion (P = .009) and lesser hip adduction (P = .022) at initial ground contact compared to the low- and moderate-stiffness groups, respectively; (2) lesser peak hip adduction compared to the low-stiffness group (P = .040); (3) lesser lateral trunk-flexion (P = .046) and knee-flexion (P = .010) excursion compared to the moderate- and low-stiffness groups, respectively; and (4) greater peak hip-flexion (P = .001), ankle-dorsiflexion (P = .002), and ankle-eversion (P = .038) moments compared to the low-stiffness group. A wide range of variability in stiffness exists within a relatively homogenous population. Athletes with varying stiffness levels display biomechanical differences that may help identify the potential mechanism(s) by which stiffness contributes to injury risk.

Waxman, Ford, and Taylor are with the Department of Physical Therapy, High Point University, High Point, NC. Nguyen is with the Department of Athletic Training, High Point University, High Point, NC.

Address author correspondence to Justin P. Waxman at jwaxman@highpoint.edu.
  • 1.

    Serpell BG, Ball NB, Scarvell JM, Smith PN. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. J Sports Sci. 2012;30(13):1347–1363. PubMed doi:10.1080/02640414.2012.710755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Butler RJ, Crowell HP 3rd, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511–517. PubMed doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Korff T, Horne SL, Cullen SJ, Blazevich AJ. Development of lower limb stiffness and its contribution to maximum vertical jumping power during adolescence. J Exp Biol. 2009;212:3737–3742. PubMed doi:10.1242/jeb.033191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bret C, Rahmani A, Dufour AB, Messonnier L, Lacour JR. Leg strength and stiffness as ability factors in 100 m sprint running. J Sports Med Phys Fitness. 2002;42(3):274–281. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chelly SM, Denis C. Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc. 2001;33(2):326–333. PubMed doi:10.1097/00005768-200102000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hobara H, Inoue K, Gomi K, et al. Continuous change in spring-mass characteristics during a 400 m sprint. J Sci Med Sport. 2010;13(2):256–261. PubMed doi:10.1016/j.jsams.2009.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hobara H, Tominaga S, Umezawa S, et al. Leg stiffness and sprint ability in amputee sprinters. Prosthet Orthot Int. 2012;36(3):312–317. PubMed doi:10.1177/0309364612442121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Dalleau G, Belli A, Bourdin M, Lacour JR. The spring-mass model and the energy cost of treadmill running. Eur J Appl Physiol Occup Physiol. 1998;77(3):257–263. PubMed doi:10.1007/s004210050330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Barnes KR, Hopkins WG, McGuigan MR, Kilding AE. Warm-up with a weighted vest improves running performance via leg stiffness and running economy. J Sci Med Sport. 2015;18(1):103–108. PubMed doi:10.1016/j.jsams.2013.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bryant AL, Kelly J, Hohmann E. Neuromuscular adaptations and correlates of knee functionality following acl reconstruction. J Orthop Res. 2008;26(1):126–135. PubMed doi:10.1002/jor.20472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Eiling E, Bryant AL, Petersen W, Murphy A, Hohmann E. Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc. 2007;15(2):126–132. PubMed doi:10.1007/s00167-006-0143-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Granata KP, Padua DA, Wilson SE. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol. 2002;12(2):127–135. PubMed doi:10.1016/S1050-6411(02)00003-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Padua DA, Carcia CR, Arnold BL, Granata KP. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Mot Behav. 2005;37(2):111–126. PubMed doi:10.3200/JMBR.37.2.111-126

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Williams DS 3rd, Davis IM, Scholz JP, Hamill J, Buchanan TS. High-arched runners exhibit increased leg stiffness compared to low-arched runners. Gait Posture. 2004;19(3):263–269. PubMed doi:10.1016/S0966-6362(03)00087-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Williams DS 3rd, McClay IS, Hamill J. Arch structure and injury patterns in runners. Clin Biomech. 2001;16(4):341–347. PubMed. doi:10.1016/S0268-0033(01)00005-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22(11–12):1217–1227. PubMed doi:10.1016/0021-9290(89)90224-8

  • 17.

    McMahon TA, Cheng GC. The mechanics of running: how does stiffness couple with speed? J Biomech. 1990;23(suppl 1):65–78. PubMed doi:10.1016/0021-9290(90)90042-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cavagna GA. Force platforms as ergometers. J Appl Physiol. 1975;39(1):174–179. PubMed

  • 19.

    Latash ML, Zatsiorsky VM. Joint stiffness: myth or reality? Hum Mov Sci. 1993;12(6):653–692. doi:10.1016/0167-9457(93)90010-M

  • 20.

    Lloyd RS, Oliver JL, Hughes MG, Williams CA. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J Sports Sci. 2009;27(14):1565–1573. PubMed doi:10.1080/02640410903311572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Dalleau G, Belli A, Viale F, Lacour JR, Bourdin M. A simple method for field measurements of leg stiffness in hopping. Int J Sports Med. 2004;25(3):170–176. PubMed doi:10.1055/s-2003-45252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Waxman JP, Schmitz RJ, Shultz SJ. The interday measurement consistency of and relationships between hamstring and leg musculo-articular stiffness. J Appl Biomech. 2015;31(5):340–348. PubMed doi:10.1123/jab.2014-0289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dupeyron A, Hertzog M, Micallef JP, Perrey S. Does an abdominal strengthening program influence leg stiffness during hopping tasks? J Strength Cond Res. 2013;27(8):2129–2133. PubMed doi:10.1519/JSC.0b013e318278f0c7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hobara H, Muraoka T, Omuro K, et al. Knee stiffness is a major determinant of leg stiffness during maximal hopping. J Biomech. 2009;42(11):1768–1771. PubMed doi:10.1016/j.jbiomech.2009.04.047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hobara H, Inoue K, Omuro K, Muraoka T, Kanosue K. Determinant of leg stiffness during hopping is frequency-dependent. Eur J Appl Physiol. 2011;111(9):2195–2201. PubMed doi:10.1007/s00421-011-1853-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hobara H, Kimura K, Omuro K, et al. Determinants of difference in leg stiffness between endurance- and power-trained athletes. J Biomech. 2008;41(3):506–514. PubMed doi:10.1016/j.jbiomech.2007.10.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hobara H, Kato E, Kobayashi Y, Ogata T. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping. J Biomech. 2012;45(16):2750–2754. PubMed doi:10.1016/j.jbiomech.2012.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lorimer AV, Hume PA. Stiffness as a risk factor for achilles tendon injury in running athletes. Sports Med. 2016;46(12):1921–1938. PubMed doi:10.1007/s40279-016-0526-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pruyn EC, Watsford ML, Murphy AJ, et al. Relationship between leg stiffness and lower body injuries in professional Australian football. J Sports Sci. 2012;30(1):71–78. PubMed doi:10.1080/02640414.2011.624540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Serpell BG, Scarvell JM, Ball NB, Smith PN. Vertical stiffness and muscle strain in professional australian football. J Sports Sci. 2014;32(20):1924–1930. PubMed doi:10.1080/02640414.2014.942681

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Serpell BG, Scarvell JM, Pickering MR, et al. Vertical stiffness is not related to anterior cruciate ligament elongation in professional rugby union players. BMJ Open Sport Exerc Med. 2016;2:000150. PubMed doi:10.1136/bmjsem-2016-000150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Watsford ML, Murphy AJ, McLachlan KA, et al. A prospective study of the relationship between lower body stiffness and hamstring injury in professional australian rules footballers. Am J Sports Med. 2010;38(10):2058–2064. PubMed doi:10.1177/0363546510370197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Taylor JB, Ford KR, Nguyen AD, Shultz SJ. Biomechanical comparison of single- and double-leg jump landings in the sagittal and frontal plane. Orthop J Sports Med. 2016;4(6):232596711665515. PubMed doi:10.1177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Joseph CW, Bradshaw EJ, Kemp J, Clark RA. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. J Appl Biomech. 2013;29(4):386–394. PubMed doi:10.1123/jab.29.4.386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Farley CT, Blickhan R, Saito J, Taylor CR. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. J Appl Physiol. 1991;71(6):2127–2132. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Arampatzis A, Schade F, Walsh M, Bruggemann GP. Influence of leg stiffness and its effect on myodynamic jumping performance. J Electromyogr Kinesiol. 2001;11(5):355–364. PubMed doi:10.1016/S1050-6411(01)00009-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bell AL, Brand RA, Pedersen DR. Prediction of hip-joint center location from external landmarks. Hum Mov Sci. 1989;8(1):3–16. doi:10.1016/0167-9457(89)90020-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Winter DA. Biomechanics and Motor Control of Human Movement. New York, NY: John Wiley & Sons, Inc.; 2005:86–117.

  • 39.

    Bishop M, Fiolkowski P, Conrad B, Brunt D, Horodyski M. Athletic footwear, leg stiffness, and running kinematics. J Athl Train. 2006;41(4):387–392.

  • 40.

    Hobara H, Inoue K, Kanosue K. Effect of hopping frequency on bilateral differences in leg stiffness. J Appl Biomech. 2013;29(1):55–60. PubMed doi:10.1123/jab.29.1.55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Brauner T, Sterzing T, Wulf M, Horstmann T. Leg stiffness: comparison between unilateral and bilateral hopping tasks. Hum Mov Sci. 2014;33:263–272. PubMed doi:10.1016/j.humov.2013.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ford KR, Myer GD, Hewett TE. Longitudinal effects of maturation on lower extremity joint stiffness in adolescent athletes. Am J Sports Med. 2010;38(9):1829–1837. PubMed doi:10.1177/0363546510367425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. PubMed doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108–115. PubMed doi:10.1249/00005768-199201000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Dierks TA, Manal KT, Hamill J, Davis IS. Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. J Orthop Sports Phys Ther. 2008;38(8):448–456. PubMed doi:10.2519/jospt.2008.2490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):12–19. PubMed doi:10.2519/jospt.2009.2885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417–422. PubMed doi:10.1136/bjsm.2009.059162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hunt MA, Birmingham TB, Bryant D, et al. Lateral trunk lean explains variation in dynamic knee joint load in patients with medial compartment knee osteoarthritis. Osteoarthritis Cartilage. 2008;16(5):591–599. PubMed doi:10.1016/j.joca.2007.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Myer GD, Ford KR, Barber Foss KD, et al. The incidence and potential pathomechanics of patellofemoral pain in female athletes. Clin Biomech. 2010;25(7):700–707. PubMed doi:10.1016/j.clinbiomech.2010.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 103 103 9
Full Text Views 17 17 1
PDF Downloads 5 5 1