Effects of Body Mass Index on Bone Loading Due to Physical Activity

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The aim of the current study was to compare bone loading due to physical activity between lean, and overweight and obese individuals. Fifteen participants (lower BMI group: BMI < 25 kg/m2, n = 7; higher BMI group: 25 kg/m2 < BMI < 36.35 kg/m2, n = 8) wore a tri-axial accelerometer on 1 day to collect data for the calculation of bone loading. The International Physical Activity Questionnaire (short form) was used to measure time spent at different physical activity levels. Daily step counts were measured using a pedometer. Differences between groups were compared using independent t-tests. Accelerometer data revealed greater loading dose at the hip in lower BMI participants at a frequency band of 0.1–2 Hz (P = .039, Cohen’s d = 1.27) and 2–4 Hz (P = .044, d = 1.24). Lower BMI participants also had a significantly greater step count (P = .023, d = 1.55). This corroborated with loading intensity (d ≥ 0.93) and questionnaire (d = 0.79) effect sizes to indicate higher BMI participants tended to spend more time in very light activity, and less time in light and moderate activity. Overall, participants with a lower BMI exhibited greater bone loading due to physical activity; participants with a higher BMI may benefit from more light and moderate level activity to maintain bone health.

Smith is with the Faculty of Education, Health & Wellbeing, University of Wolverhampton, Walsall, United Kingdom. Reeves and Halsey are with the Department of Life Sciences, University of Roehampton, London, United Kingdom. Huber is with the School of Health Sciences, University of Brighton, Brighton, United Kingdom. Luo is with the School of Applied Sciences, London South Bank University, London, United Kingdom.

Address author correspondence to Tina Smith at Tina.Smith@wlv.ac.uk.
  • 1.

    WHO. Obesity and overweight fact sheet no. 311. 2015. www.who.int/mediacentre/factsheets/fs311/en/. Accessed August 12, 2015.

    • Export Citation
  • 2.

    Allison DB, Downey M, Atkinson RL, et al. Obesity as a disease: a white paper on evidence and arguments commissioned by the Council of The Obesity Society. Obesity 2008;16:11611177. PubMed doi:10.1038/oby.2008.231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Scheers T, Philippaerts R, Lefevre J. Patterns of physical activity and sedentary behavior in normal-weight, overweight and obese adults, as measured with a portable armband device and an electronic diary. Clin Nutr. 2012;31:756764. PubMed doi:10.1016/j.clnu.2012.04.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Shaw KA, Gennat HC, O’Rouke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database of Syst Rev. 2006(4):CD003817. doi:10.1002/14651858.CD003817.pub3

    • Search Google Scholar
    • Export Citation
  • 5.

    Bell JA, Hamer M, van Hees VT, Singh-Manous A, Kivimaki M, Sabia S. Healthy obesity and objective physical activity. Am J Clin Nutr. 2015;102:268275. PubMed doi:10.3945/ajcn.115.110924

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hansen BH, Holme I, Anderssen SA, Kolle E. Patterns of objectively measured physical activity in normal weight, overweight, and obese individuals (20–85 Years): a cross-sectional study. PLoS ONE 2013;8(1):53044. PubMed doi:10.1371/journal.pone.0053044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the framingham study. J Bone Miner Res. 1993;8(5):567573. PubMed doi:10.1002/jbmr.5650080507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Shapses SA, Riedt CS. Bone, body weight, and weight reduction: what are the concerns? J Nutr. 2006;136:14531456.

  • 9.

    Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012;32:287309. PubMed doi:10.1146/annurev.nutr.012809.104655

  • 10.

    Søgaard AJ, Holvik K, Omsland TK, et al. Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60–79 years followed for 8 years. Cohort of Norway. J Int Med. 2015;277(3):306317. PubMed doi:10.1111/joim.12230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Zhao L, Jiang H, Papasian CJ, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;23(1):1729. PubMed doi:10.1359/jbmr.070813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Zhao L, Liu Y, Liu P, Hamilton J, Recker R, Deng H. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007;92(5):16401646. doi:10.1210/jc.2006-0572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JA. Exercise and bone mass in adults. Sports Med. 2009;39(6):439468. PubMed doi:10.2165/00007256-200939060-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):4550. PubMed doi:10.1097/00003677-200301000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone 1998;23(5):399407. PubMed doi:10.1016/S8756-3282(98)00118-5

  • 16.

    David V, Martin A, Lafage-Proust M, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor γ in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 2007;148(5):25532562. PubMed doi:10.1210/en.2006-1704

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(4):319338. PubMed doi:10.1615/CritRevEukarGeneExpr.v19.i4.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Foley S, Quinn S, Jones G. Pedometer determined ambulatory activity and bone mass: a population-based longitudinal study in older adults. Osteoporos Int. 2010;21:18091816. PubMed doi:10.1007/s00198-009-1137-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wee J, Sng BY, Chen L, Lim CT, Sungh G, De SD. The relationship between body mass index and physical activity levels in relation to bone mineral density in premenopausal and postmenopausal women. Arch Osteoporos. 2013;8(1–2):162. PubMed doi:10.1007/s11657-013-0162-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Saravi FD, Sayegh F. Bone mineral density and body composition of adult premenopausal women with three levels of physical activity. J Osteoporos. 2013;2013:953271. PubMed doi:10.1155/2013/953271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Langsetmo L, Hitchcock CL, Kingwell EJ, et al. Physical activity, body mass index and bone mineral density — associations in a prospective population-based cohort of women and men: the Canadian Multicentre Osteoporosis Study (CaMos). Bone 2012;50(1):401408. PubMed doi:10.1016/j.bone.2011.11.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115. PubMed doi:10.1186/1479-5868-8-115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Prince SA, Adamo KB, Hamel ME, Hardt J, Gorber SC, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. PubMed doi:10.1186/1479-5868-5-56

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Abel MG, Peritore N, Shapiro R, Mullineaux DR, Rodriguez K, Hannon JC. A comprehensive evaluation of motion sensor step-counting error. Appl Physiol Nutr Metab. 2011;36:166170. PubMed doi:10.1139/H10-095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Crouter SE, Schneider PL, Bassett DR. Spring-levered versus piezo-electric pedometer accuracy in overweight and obese adults. Med Sci Sports Exerc. 2005;37(10):16731679. PubMed doi:10.1249/01.mss.0000181677.36658.a8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chahal J, Lee R, Luo J. Loading dose of physical activity is related to muscle strength and bone density in middle-aged women. Bone 2014;67:4145. PubMed doi:10.1016/j.bone.2014.06.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kelley S, Hopkinson G, Strike S, Luo J, Lee R. An accelerometry-based approach to assess loading intensity of physical activity on bone. Res Q Exerc Sport. 2014;85:245250. PubMed doi:10.1080/02701367.2014.897680

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Reeves S, Huber JW, Halsey LG, Villegas-Montes M, Elgumati J, Smith T. A cross-over experiment to investigate possible mechanisms for lower BMIs in people who habitually eat breakfast. Eur J Clin Nutr. 2015;69:632637. PubMed doi:10.1038/ejcn.2014.269

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Craig L, Marshall A, Sjöström M, et al. International Physical Activity Questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):13811395. PubMed doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    IPAQ. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ)– short and long forms. 2005. https://sites.google.com/site/theipaq/scoring-protocol. Accessed June 24, 2013.

    • Export Citation
  • 31.

    Halsey LG, Huber JW, Low T, Ibeawuchi C, Woodruff P, Reeves S. Does consuming breakfast influence activity levels? An experiment into the effect of breakfast consumption on eating habits and energy expenditure. Public Health Nutr. 2011;15(2):238245. PubMed doi:10.1017/S136898001100111X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Weeks BK, Beck BR. The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int. 2008;19:15671577. PubMed doi:10.1007/s00198-008-0606-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.

  • 34.

    Cappozzo A. Low frequency self-generated vibration during ambulation in normal men. J Biomech. 1982;15(8):599609. PubMed doi:10.1016/0021-9290(82)90071-9

  • 35.

    Vainionpää A, Korpelainen R, Sievänen H, Vihriälä E, Leppäluoto J, Jämsä T. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 2007;40:604611. PubMed doi:10.1016/j.bone.2006.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Hsieh Y, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res. 2001;16(5):918924. PubMed doi:10.1359/jbmr.2001.16.5.918

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Jämsä T, Vainionpää A, Korpelainen R, Leppäluoto J. Effect of daily physical activity on proximal femur. Clin Biomech. 2006;21:17. PubMed doi:10.1016/j.clinbiomech.2005.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vainionpää A, Korpelainen R, Vihriälä E, Rinta-Paavola A, Leppäluoto J, Jämsä T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int. 2006;17:455463. PubMed doi:10.1007/s00198-005-0005-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Tobias JH, Gould V, Brunton L, et al. Physical activity and bone: may the force be with you. Front Endocrinol (Lausanne). 2014;5:20. PubMed doi:10.3389/fendo.2014.00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps a day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12:14801485. PubMed doi:10.1359/jbmr.1997.12.9.1480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204:33893399. PubMed

  • 42.

    Smeathers JE. Transient vibrations caused by heel strike. Proc Inst Mech Eng Part H. 1989;203:181186. PubMed doi:10.1243/PIME_PROC_1989_203_036_01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Farr JN, Lee VR, Blew RM, Lohman TG, Going SB. Quantifying bone-relevant activity and its relation to bone strength in girls. Med Sci Sports Exerc. 2011;43(3):476483. PubMed doi:10.1249/MSS.0b013e3181eeb2f2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ward DS, Evenson KR, Vaughn A, Brown Rodgers A, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37(11S):S582588. PubMed doi:10.1249/01.mss.0000185292.71933.91

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11(1):121. doi:10.1080/00401706.1969.10490657

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 123 112 2
Full Text Views 4 4 0
PDF Downloads 2 2 0