Effect of Posttrial Visual Feedback and Fatigue During Drop Landings on Patellofemoral Joint Stress in Healthy Female Adults

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Patellofemoral pain (PFP) is common in females. Patellofemoral joint stress (PFJS) may be important in the development of PFP. Ground reaction force (GRF) during landing activities may impact PFJS. Our purpose was to determine how healthy females alter their landing mechanics using visual posttrial feedback on their GRF and assess how PFJS changes. Seventeen participants performed a series of drop landings during 3 conditions: baseline, feedback, and postfatigue feedback. The fatigue protocol used repetitive jump squats. Quadriceps force was estimated through inverse-dynamics-based static optimization approach. Then, PFJS was calculated using a musculoskeletal model. Multivariate differences were shown across conditions (P = .01). Univariate tests revealed differences in PFJS (P = .014), knee range of motion (P = .001), and GRF (P = .005). There were no differences in quadriceps force (P = .125). PFJS and GRF decreased from baseline to feedback (P = .002, P = .007, respectively), while PFJS increased from feedback to postfatigue feedback (P = .03). Knee range of motion increased from baseline to feedback (P = .043), then decreased from feedback to postfatigue feedback (P < .001). Visual feedback of GRF may reduce PFJS, but may not effectively transfer to a fatigued state.

Olbrantz, Bergelin, Asmus, Kernozek, and Rutherford are with the Physical Therapy Program, Department of Health Professions, La Crosse Institute for Movement Science, University of Wisconsin-La Crosse, La Crosse, WI. Gheidi is with the Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI.

Address author correspondence to Thomas W. Kernozek at tkernozek@uwlax.edu.
  • 1.

    Rothermich MA, Glaviano NR, Li J, Hart JM. Patellofemoral pain epidemiology, pathophysiology, and treatment options. Clin Sports Med. 2015;34(2):313–327. PubMed doi:10.1016/j.csm.2014.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Brechter JH, Powers CM. Patellofemoral stress during walking in persons with and without patellofemoral pain. Med Sci Sports Exerc. 2002;34:1582–1593. PubMed doi:10.1249/01.MSS.0000035990.28354.c6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Neal BS, Barton CJ, Gallie R, O’Halloran P, Morrissey D. Runners with patellofemoral pain have altered biomechanics which targeted interventions can modify: a systematic review and meta-analysis. Gait Posture. 2016;45:69–82. PubMed doi:10.1016/j.gaitpost.2015.11.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Farrokhi S, Keyak JH, Powers CM. Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study. Osteoarthritis Cartilage. 2011;19:287–294. doi:10.1016/j.joca.2010.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vannatta CN, Kernozek TW. Patellofemoral joint stress during running with alterations in foot strike pattern. Med Sci Sports Exerc. 2015;47(5):1001–1008. PubMed doi:10.1249/MSS.0000000000000503

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Peng HT, Chen WC, Kernozek TW, Kim K, Song CY. Influences of patellofemoral pain and fatigue in female dancers during ballet jump-landing. Int J Sports Med. 2015;36:747–753. PubMed doi:10.1055/s-0035-1547220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Willson JD, Binder-Macleod S, Davis IS. Lower extremity jumping mechanics of females with and without patellofemoral pain before and after exertion. Am J Sports Med. 2008;36:1587–1596. PubMed doi:10.1177/0363546508315592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Draper CE, Fredericson M, Gold GE, et al. Patients with patellofemoral pain exhibit elevated bone metabolic activity at the patellofemoral joint. J Orthop Res. 2012;30:209–213. PubMed doi:10.1002/jor.21523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ho KY, Keyak JH, Powers CM. Comparison of patella bone strain between females with and without patellofemoral pain: a finite element analysis study. J Biomech. 2014;47:230–236. PubMed doi:10.1016/j.jbiomech.2013.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Noehren B, Scholz J, Davis I. The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome. Br J Sports Med. 2011;45:691–696. PubMed doi:10.1136/bjsm.2009.069112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ericksen HM, Thomas AC, Gribble PA, Doebel SC, Pietrosimone BG. Immediate effects of real-time feedback on jump-landing kinematics. J Orthop Sports Phys Ther. 2015;45:112–118. PubMed doi:10.2519/jospt.2015.4997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van den Bogert AJ, Geijtenbeek T, Even-Zohar O, Steenbrink F, Hardin EC. A real-time system for biomechanical analysis of human movement and muscle function. Med Biol Eng Comput. 2013;51(10):1069–1077. PubMed doi:10.1007/s11517-013-1076-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kulmala JP, Avela J, Pasanen K, Parkkari J. Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers. Med Sci Sports Exerc. 2013;45:2306–2313. PubMed doi:10.1249/MSS.0b013e31829efcf7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Nuzzo JL, Anning JH, Scharfenberg JM. The reliability of three devices used for measuring vertical jump height. J Strength Cond Res. 2011;25:2580–2590. PubMed doi:10.1519/JSC.0b013e3181fee650

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Edwards S, Steele JR, McGhee DE. Does a drop landing represent a whole skill landing and is this moderated by fatigue?Scand J Med Sci Sports. 2009;20:516–523. PubMed doi:10.1111/j.1600-0838.2009.00964.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kernozek TW, Ragan RJ. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clin Biomech. 2008;23:1279–1286. PubMed doi:10.1016/j.clinbiomech.2008.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381. PubMed

  • 18.

    Lyght M, Nockerts M, Kernozek TW, Ragan R. Effects of foot strike and step frequency on achilles tendon stress during running. J Appl Biomech. 2016;32:365–372. PubMed doi:10.1123/jab.2015-0183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Connolly KD, Ronsky JL, Westover LM, Kupper JC, Frayne R. Differences in patellofemoral contact mechanics associated with patellofemoral pain syndrome. J Biomech. 2009;42:2802–2807. PubMed doi:10.1016/j.jbiomech.2009.07.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    van Eijden TM, de Boer W, Weijs WA. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle. J Biomech. 1985;18:803–809. PubMed doi:10.1016/0021-9290(85)90055-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Nyman E, Armstrong CW. Real-time feedback during drop landing improves subsequent frontal and sagittal plane knee kinematics. Clin Biomech. 2015;30:988–994. PubMed doi:10.1016/j.clinbiomech.2015.06.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Boling M, Padua D, Marshall S, Guskiewicz K, Pyne S, Beutler A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the joint undertaking to monitor and prevent ACL injury (JUMP-ACL) cohort. Am J Sports Med. 2009;37(11):2108–2116. PubMed doi:10.1177/0363546509337934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Benjaminse A, Habu A, Sell T, et al. Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc. 2008;16(4):400–407. PubMed doi:10.1007/s00167-007-0432-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dickin DC, Johann E, Wang H, Popp JK. Combined effects of drop height and fatigue on landing mechanics in active females. J Appl Biomech. 2015;31(4):237–243. PubMed doi:10.1123/jab.2014-0190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McLean SG, Samorezov JE. Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009;41(8):1662–1673. PubMed doi:10.1249/MSS.0b013e31819ca07b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Liederbach M, Kremenic IJ, Orishimo KF, Pappas E, Hagins M. Comparison of landing biomechanics between male and female dancers and athletes, part 2: influence of fatigue and implications for anterior cruciate ligament injury. Am J Sports Med. 2014;42(5):1089–1095. PubMed doi:10.1177/0363546514524525

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Barrios JA, Crossley KM, Davis IS. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech. 2010;43:2208–2213. PubMed doi:10.1016/j.jbiomech.2010.03.040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Benjaminse A, Gokeler A, Dowling AV, et al. Optimization of the anterior cruciate ligament injury prevention paradigm: novel feedback techniques to enhance motor learning and reduce injury risk. J Orthop Sports Phys Ther. 2015;45(3):170–182. PubMed doi:10.2519/jospt.2015.4986

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cowling EJ, Steele JR, McNair PJ. Effect of verbal instructions on muscle activity and risk of injury to the anterior cruciate ligament during landing. Br J Sports Med. 2003;37(2):126–130. PubMed doi:10.1136/bjsm.37.2.126

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Milner CE, Fairbrother JT, Srivatsan A, Zhang S. Simple verbal instruction improves knee biomechanics during landing in female athletes. Knee. 2012;19(4):399–403. PubMed doi:10.1016/j.knee.2011.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    McNair PJ, Prapavessis H, Callender K. Decreasing landing forces: effect of instruction. Br J Sports Med. 2000;34(4):293–296. PubMed doi:10.1136/bjsm.34.4.293

  • 32.

    Mizner RL, Kawaguchi JK, Chmielewski TL. Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J Orthop Sports Phys Ther. 2008;38(6):353–361. PubMed doi:10.2519/jospt.2008.2726

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Prapavessis H, McNair PJ. Effects of instruction in jumping technique and experience jumping on ground reaction forces. J Orthop Sports Phys Ther. 1999;29(6):352–356. PubMed doi:10.2519/jospt.1999.29.6.352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Herman DC, Onate JA, Weinhold PS, et al. The effects of feedback with and without strength training on lower extremity biomechanics. Am J Sports Med. 2009;37(7):1301–1308. PubMed doi:10.1177/0363546509332253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Cronin JB, Bressel E, Finn L. Augmented feedback reduces ground reaction forces in the landing phase of the volleyball spike jump. J Sports Rehabil. 2008;17:148–159. PubMed doi:10.1123/jsr.17.2.148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Onate JA, Guskiewicz KM, Marshall SW, Giuliani C, Yu B, Garrett WE. Instruction of jump-landing technique using videotape feedback—altering lower extremity motion patterns. Am J Sports Med. 2005;33(6):831–842. PubMed doi:10.1177/0363546504271499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Onate JA, Guskiewicz KM, Sullivan RJ. Augmented feedback reduces jump landing forces. J Orthop Sports Phys Ther. 2001;31(9):511–517. PubMed doi:10.2519/jospt.2001.31.9.511

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Munro A, Herrington L. The effect of videotape augmented feedback on drop jump landing strategy: implications for anterior cruciate ligament and patellofemoral joint injury prevention. Knee. 2014;21(5):891–895. PubMed doi:10.1016/j.knee.2014.05.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 104 104 13
Full Text Views 29 29 1
PDF Downloads 3 3 0