Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

We aimed to clarify the mechanical determinants of sprinting performance during acceleration and maximal speed phases of a single sprint, using ground reaction forces (GRFs). While 18 male athletes performed a 60-m sprint, GRF was measured at every step over a 50-m distance from the start. Variables during the entire acceleration phase were approximated with a fourth-order polynomial. Subsequently, accelerations at 55%, 65%, 75%, 85%, and 95% of maximal speed, and running speed during the maximal speed phase were determined as sprinting performance variables. Ground reaction impulses and mean GRFs during the acceleration and maximal speed phases were selected as independent variables. Stepwise multiple regression analysis selected propulsive and braking impulses as contributors to acceleration at 55%–95% (β > 0.72) and 75%–95% (β > 0.18), respectively, of maximal speed. Moreover, mean vertical force was a contributor to maximal running speed (β = 0.48). The current results demonstrate that exerting a large propulsive force during the entire acceleration phase, suppressing braking force when approaching maximal speed, and producing a large vertical force during the maximal speed phase are essential for achieving greater acceleration and maintaining higher maximal speed, respectively.

Nagahara, Mizutani, Matsuo, Kanehisa, and Fukunaga are with the National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan.

Address author correspondence to Ryu Nagahara at nagahara@nifs-k.ac.jp.
  • 1.

    Cavagna GA, Komarek L, Mazzoleni S. The mechanics of sprint running. J Physiol. 1971;217:709–721. PubMed doi:10.1113/jphysiol.1971.sp009595

  • 2.

    Fukunaga T, Matsuo A, Ichikawa M. Mechanical energy output and joint movements in sprint running. Ergonomics. 1981;24:765–772. PubMed doi:10.1080/00140138108924898

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hunter JP, Marshall RN, McNair PJ. Interaction of step length and step rate during sprint running. Med Sci Sports Exerc. 2004;36:261–271. PubMed doi:10.1249/01.MSS.0000113664.15777.53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21:31–43. PubMed doi:10.1123/jab.21.1.31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mero A, Komi PV. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. Eur J Appl Physiol Occup Physiol. 1986;55:553–561. PubMed doi:10.1007/BF00421652

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Morin JB, Slawinski J, Dorel S, et al. Acceleration capability in elite sprinters and ground impulse: push more, brake less? J Biomech. 2015;48:3149–3154. PubMed doi:10.1016/j.jbiomech.2015.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Plamondon A, Roy B. Kinematics and kinetics of sprint acceleration. Can J Appl Sport Sci. 1984;9:42–52. PubMed

  • 8.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583–594. PubMed doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89:1991–1999. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Belli A, Kyrolainen H, Komi PV. Moment and power of lower limb joints in running. Int J Sports Med. 2002;23:136–141. PubMed doi:10.1055/s-2002-20136

  • 11.

    Clark KP, Weyand PG. Are running speeds maximized with simple-spring stance mechanics? J Appl Physiol. 2014;117:604–615. PubMed doi:10.1152/japplphysiol.00174.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hamill J, Bates BT, Knutzen KM, Sawhill JA. Variations in ground reaction force parameters at different running speeds. Hum Mov Sci. 1983;2:47–56. doi:10.1016/0167-9457(83)90005-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kyrolainen H, Komi PV, Belli A. Changes in muscle activity patterns and kinetics with increasing running speed. J Strength Cond Res. 1999;13:400–406.

    • Search Google Scholar
    • Export Citation
  • 14.

    Luhtanen P, Komi PV. Force-, power-, and elasticity-velocity relationships in walking, running, and jumping. Eur J Appl Physiol Occup Physiol. 1980;44:279–289. PubMed doi:10.1007/BF00421627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech. 1987;20:147–155. PubMed doi:10.1016/0021-9290(87)90306-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Nigg BM, Bahlsen HA, Luethi SM, Stokes S. The influence of running velocity and midsole hardness on external impact forces in heel-toe running. J Biomech. 1987;20:951–959. PubMed doi:10.1016/0021-9290(87)90324-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nilsson J, Thorstensson A. Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand. 1989;136:217–227. PubMed doi:10.1111/j.1748-1716.1989.tb08655.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215:1944–1956. PubMed doi:10.1242/jeb.064527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nagahara R, Naito H, Morin JB, Zushi K. Association of acceleration with spatiotemporal variables in maximal sprinting. Int J Sports Med. 2014;35:755–761. PubMed doi:10.1055/s-0033-1363252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bezodis NE, Salo AI, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomech. 2010;9:258–269. PubMed doi:10.1080/14763141.2010.538713

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Slawinski J, Termoz N, Rabita G, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27:45–54. PubMed doi:10.1111/sms.12627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bezodis NE, Salo AI, Trewartha G. Measurement error in estimates of sprint velocity from a laser displacement measurement device. Int J Sports Med. 2012;33:439–444. PubMed doi:10.1055/s-0031-1301313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 585 585 92
Full Text Views 58 58 11
PDF Downloads 25 25 5