Effects of Knee Position on the Reliability and Production of Maximal and Rapid Strength Characteristics During an Isometric Squat Test

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

This study aimed to examine the effects of knee position on the reliability and production of peak force (PF) and rate of force development (RFD) characteristics during an isometric squat. Fourteen resistance-trained females performed isometric squats at 90, 120, and 150° knee angles (corresponding to parallel, half, and quarter squat positions, respectively) on 2 different occasions, from which PF, peak RFD, and early (RFD30, RFD50, RFD100) and late (RFD200) phase RFD variables were extracted. PF and RFD200 were highly consistent across trials for all 3 squat positions, with intraclass correlation coefficients (ICCs) ranging between 0.812–0.904 and coefficients of variation (CVs) between 6.6–19.4%. For peak and early RFD characteristics, higher ICCs and lower CV values were observed for the quarter squat (ICCs = 0.818–0.852, CVs = 17.3–19.4%) compared to the parallel (ICCs = 0.591–0.649, CVs = 30.1–55.9%) and half squats (ICCs = 0.547–0.598,CVs = 31.1–34.2%). In addition, isometric PF and RFD200 increased (P ≤ .001–0.04) with squat position (parallel < half < quarter); however, there were no differences for peak RFD (P ≥ .27), RFD30 (P ≥ .99), RFD50 (P ≥ .99), and RFD100 (P ≥ .09). These findings suggest that performing isometric squats at higher (150°) rather than lower knee joint angles (90–120°) may provide for an improved capacity to produce greater PF and RFD200 as well as a more reliable testing position for measuring peak and early RFD characteristics.

Palmer, Pineda, and Durham are with the Dept of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX.

Address author correspondence to Ty B. Palmer at ty.palmer@ttu.edu.
  • 1.

    Berryman N, Bherer L, Nadeau S, et al. Executive functions, physical fitness and mobility in well-functioning older adults. Exp Gerontol. 2013;48(12):14021409. PubMed doi:10.1016/j.exger.2013.08.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tillin NA, Pain MTG, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31(1):6676. PubMed doi:10.1080/02640414.2012.720704

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bartolomei S, Sadres E, Church DD, et al. Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur J Appl Physiol. 2017;117(7):12871298. PubMed doi:10.1007/s00421-017-3598-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985). 2002;93(4):13181326. doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Morcelli MH, LaRoche DP, Crozara LF, et al. Neuromuscular performance in the hip joint of elderly fallers and non-fallers. Aging Clin Exp Res. 2016;28(3):443450. PubMed doi:10.1007/s40520-015-0448-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    De Ruiter CJ, Kooistra RD, Paalman MI, De Haan A. Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J Appl Physiol. 2004;97(5):16931701. PubMed doi:10.1152/japplphysiol.00230.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Thompson BJ, Ryan ED, Herda TJ, et al. Consistency of rapid muscle force characteristics: influence of muscle contraction onset detection methodology. J Electromyogr Kinesiol. 2012;22(6):893900. PubMed doi:10.1016/j.jelekin.2012.05.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wilson GJ, Murphy AJ. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996;22(1):1937. PubMed doi:10.2165/00007256-199622010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nuzzo JL, McBride JM, Cormie P, McCaulley GO. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J Strength Cond Res. 2008;22(3):699707. PubMed doi:10.1519/JSC.0b013e31816d5eda

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Izquierdo M, Aguado X, Gonzalez R, Lopez J, Häkkinen K. Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol. 1999;79(3):260267. doi:10.1007/s004210050504

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bazyler CD, Sato K, Wassinger CA, Lamont HS, Stone MH. The efficacy of incorporating partial squats in maximal strength training. J Strength Cond Res. 2014;28(11):30243032. PubMed doi:10.1519/JSC.0000000000000465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bazyler CD, Beckham GK, Sato K. The use of the isometric squat as a measure of strength and explosiveness. J Strength Cond Res. 2015;29(5):13861392. PubMed doi:10.1519/JSC.0000000000000751

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wilson GJ, Lyttle AD, Ostrowski KJ, Murphy AJ. Assessing dynamic performance: a comparison of rate of force development tests. J Strength Cond Res. 1995;9(3):176181. doi:10.1519/1533-4287(1995)009<0176:ADPACO>2.3.CO;2

    • Search Google Scholar
    • Export Citation
  • 14.

    Hart NH, Nimphius S, Cochrane JL, Newton RU. Reliability and validity of unilateral and bilateral isometric strength measures using a customised, portable apparatus. J Aust Strength Cond. 2012;20(suppl 1):6167.

    • Search Google Scholar
    • Export Citation
  • 15.

    Blazevich AJ, Gill N, Newton RU. Reliability and validity of two isometric squat tests. J Strength Cond Res. 2002;16(2):298304. PubMed

  • 16.

    Marcora S, Miller MK. The effect of knee angle on the external validity of isometric measures of lower body neuromuscular function. J Sports Sci. 2000;18(5):313319. PubMed doi:10.1080/026404100402377

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Paulus DC, Reiser RF, Troxell WO. Pneumatic strength assessment device: design and isometric measurement. Biomed Sci Instrum. 2004;40:277282. PubMed

  • 18.

    Paulus DC, Reiser RF, Troxell WO. Peak lifting velocities of men and women for the reduced inertia squat exercise using force control. Eur J Appl Physiol. 2008;102(3):299305. PubMed doi:10.1007/s00421-007-0585-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fisher H, Stephenson ML, Graves KK, et al. Relationship between force production during isometric squats and knee flexion angles during landing. J Strength Cond Res. 2016;30(6):16701679. PubMed doi:10.1519/JSC.0000000000001264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bridgeman LA, McGuigan MR, Gill ND, Dulson DK. Test-retest reliability of a novel isokinetic squat device with strength-trained athletes. J Strength Cond Res. 2016;30(11):32613265. PubMed doi:10.1519/JSC.0000000000001410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stock MS, Luera MJ. Consistency of peak and mean concentric and eccentric force using a novel squat testing device. J Appl Biomech. 2014;30(2):322325. PubMed doi:10.1123/jab.2013-0191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Verdera F, Champavier L, Schmidt C, Bermon S, Marconnet P. Reliablilty and validity of a new device to measure isometric strength in polyarticular exercises. J Sports Med Phys Fit. 1999;39(2):113119. PubMed

    • Search Google Scholar
    • Export Citation
  • 23.

    Wretenberg P, Feng Y, Arborelius UP. High-and low-bar squatting techniques during weight-training. Med Sci Sports Exerc. 1996;28(2):218224. PubMed doi:10.1097/00005768-199602000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Palmer TB, Thiele RM, Thompson BJ. Age-related differences in maximal and rapid torque characteristics of the hip extensors and dynamic postural balance in healthy, young and old females. J Strength Cond Res. 2017;31(2):480488. PubMed doi:10.1519/JSC.0000000000001503

    • Search Google Scholar
    • Export Citation
  • 25.

    Stock MS, Mota JA, Hernandez JM, Thompson BJ. Echo intensity and muscle thickness as predictors of athleticism and isometric strength in middle-school boys. Muscle Nerve. 2017;55(5):685692. PubMed doi:10.1002/mus.25395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jenkins NDM, Housh TJ, Buckner SL, et al. Four weeks of high-versus low-load resistance training to failure on the rate of torque development, electromechanical delay, and contractile twitch properties. J Musculoskelet Neuronal Interact. 2016;16(2):135144. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tillin NA, Jimenez-Reyes P, Pain MTG, Folland JP. Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc. 2010;42(4):781790. PubMed doi:10.1249/MSS.0b013e3181be9c7e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420428. PubMed doi:10.1037/0033-2909.86.2.420

  • 29.

    Weir J. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed doi:10.1519/15184.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed doi:10.2165/00007256-200030010-00001

  • 31.

    Jenkins ND, Buckner SL, Bergstrom HC, et al. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Exp Gerontol. 2014;58:4750. PubMed doi:10.1016/j.exger.2014.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McGawley K, Bishop D. Reliability of a 5 × 6-s maximal cycling repeated-sprint test in trained female team-sport athletes. Eur J Appl Physiol. 2006;98(4):383393. PubMed doi:10.1007/s00421-006-0284-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Palmer TB, Followay BN, Thompson BJ. Age-related effects on maximal and rapid hamstrings/quadriceps strength capacities and vertical jump power in young and older females. Aging Clin Exp Res. 2017;29(6):12311239. PubMed doi:10.1007/s40520-017-0734-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Murphy AJ, Wilson GJ. Poor correlations between isometric tests and dynamic performance: relationship to muscle activation. Eur J Appl Physiol. 1996;73(3–4):353357. doi:10.1007/BF02425498

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Blazevich AJ, Cannavan D, Horne S, Coleman DR, Aagaard P. Changes in muscle force–length properties affect the early rise of force in vivo. Muscle Nerve. 2009;39(4):512520. PubMed doi:10.1002/mus.21259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Murphy AJ, Wilson GJ, Pryor JF, Newton RU. Isometric assessment of muscular function: the effect of joint angle. J Appl Biomech. 1995;11(2):205215. doi:10.1123/jab.11.2.205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Sale D. Testing strength and power. In:MacDougall JD, Wenger HA, Green HJ, eds. Physiological Testing of the High-Performance Athlete. 2nd ed. Champaign, IL: Human Kinetics Books; 1991:21106.

    • Search Google Scholar
    • Export Citation
  • 38.

    Rousanoglou EN, Karteroliotis K, Boudolos KD. A principal component analysis of sport-specific isometric evaluation. Isokinet Exerc Sci. 2006;14(3):261267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Palmer TB, Thiele RM, Williams KB, et al. The identification of fall history using maximal and rapid isometric torque characteristics of the hip extensors in healthy, recreationally active elderly females: a preliminary investigation. Aging Clin Exp Res. 2015;27(4):431438. PubMed doi:10.1007/s40520-014-0305-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 335 335 64
Full Text Views 14 14 2
PDF Downloads 8 8 1