Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session ‘with instruction’ followed by a testing session performed 1 week later with ‘instruction withdrawn.’ The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s−1) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s−1). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P < .001) values (in relation to BW and BW·s−1, respectively) were observed for the second jump-landing (postreactive jump). Small increases (ES = 0.22–0.42) in all landing forces were observed in the second jump-landing with ‘instruction withdrawn.’ These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

Clissold and Winwood are with the Dept of Sport and Recreation, School of Applied Science, Toi Ohomai Institute of Technology, Tauranga, New Zealand. Clissold, Winwood, and Cronin are with the Sports Performance Research Institute New Zealand (SPRINZ), AUT University, Auckland, New Zealand. Cronin is also with the School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Australia. De Souza is with the Dept of Kinesiology, Pennsylvania State University, Pennsylvania, PA.

Address author correspondence to Tracey L. Clissold at tracey.clissold@toiohomai.ac.nz.
  • 1.

    Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporis Int. 2013;24(1):23–57. doi:10.1007/s00198-012-2074-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lippuner K, Johansson H, Kanis JA, Rizzoli R. Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women. Osteoporis Int. 2009;20(7):1131–1140. doi:10.1007/s00198-008-0779-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    International Osteoporosis Foundation. Osteoporosis fast facts. 2015. https://www.iofbonehealth.org/facts-statistics. Accessed May 13, 2016.

    • Export Citation
  • 4.

    Ebeling P, Daly RM, Kerr DA, Kimlim MG. Building healthy bones throughout life: an evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust. 2013;199(suppl 7):1.

    • Search Google Scholar
    • Export Citation
  • 5.

    Weaver CM, Gordon CM, Janz KF, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporis Int. 2016;27(4):1281–1386. doi:10.1007/s00198-015-3440-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18(3):551–555. PubMed doi:10.1519/1533-4287(2004)18<551:RAFVOS>2.0.CO;2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ashley CD, Weiss LW. Vertical jump performance and selected physiological characteristics of women. J Strength Cond Res. 1994;8(1):5–11.

    • Search Google Scholar
    • Export Citation
  • 8.

    Winwood PW, Cronin JB, Posthumus LR, Finlayson SJ, Gill ND, Keogh JWL. Strongman vs. traditional resistance training effects on muscular function and performance. J Strength Cond Res. 2015;29(2):429–439. PubMed doi:10.1519/JSC.0000000000000629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bobbert MF, Mackay M, Schinkelshoek D, Huijing PA, van Ingen Schenau GJ. Biomechanical analysis of drop and countermovement jumps. Eur J Appl Physiol Occup Physiol. 1986;54(6):566–573. PubMed doi:10.1007/BF00943342

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bobbert MF, Huijing PA, Van Ingen Schenau GJ. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med Sci Sports Exerc. 1987;19(4):332–338. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bassey EJ, Littlewood JJ, Taylor SJG. Relations between compressive axial forces in an instrumented massive femoral implant, ground reaction forces, and integrated electromyographs from vastus lateralis during various ‘osteogenic’ exercises. J Biomech. 1997;30(3):213–223. PubMed doi:10.1016/S0021-9290(96)00043-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13(12):1805–1813. PubMed doi:10.1359/jbmr.1998.13.12.1805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Strong JE. Effects of Different Jumping Programs on Hip and Spine Bone Mineral Density in Pre-menopausal Women. [PhD thesis]. Ann Arbor, MI: Brigham Young University; 2004.

    • Search Google Scholar
    • Export Citation
  • 14.

    Tucker LA, Strong JE, LeCheminant JD, Bailey BW. Effect of two jumping programs on hip bone mineral density in premenopausal women: a randomized controlled trial. Am J Health Promot. 2015;29:158–164. PubMed doi:10.4278/ajhp.130430-QUAN-200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Babatunde OO, Forsyth JJ, Gidlow CJ. A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women. Osteoporis Int. 2012;23(1):109–119. doi:10.1007/s00198-011-1801-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McKay H, Tsang G, Heinonen A, MacKelvie K, Sanderson D, Khan KM. Ground reaction forces associated with an effective elementary school based jumping intervention. Br J Sports Med. 2005;39(1):10–14. PubMed doi:10.1136/bjsm.2003.008615

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporis Int. 1994;4(2):72–75. doi:10.1007/BF01623226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bailey CA, Brooke-Wavell K. Daily exercise is most effective for increasing hip bone mineral density: a randomized high-impact, unilateral intervention. Bone. 2009;44(suppl 1):S100–101. doi:10.1016/j.bone.2009.01.219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bailey CA, Brooke-Wavell K. Optimum frequency of exercise for bone health: randomised controlled trial of a high-impact unilateral intervention. Bone. 2010;46(4):1043–1049. doi:10.1016/j.bone.2009.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Stiles VH, Griew PJ, Rowlands AV. Use of accelerometry to classify activity beneficial to bone in premenopausal women. Med Sci Sports Exerc. 2013;45(12):2353–2361. PubMed doi:10.1249/MSS.0b013e31829ba765

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Weeks BK, Beck BR. The BPAQ: a bone-specific physical activity assessment instrument. Osteoporis Int. 2008;19(11):1567–1577. PubMed doi:10.1007/s00198-008-0606-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9. PubMed doi:10.1002/ar.1092190104

  • 23.

    Frost HM. Perspectives: the role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res. 1992;7(3):253–261. PubMed doi:10.1002/jbmr.5650070303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275A(2):1081–1101. PubMed doi:10.1002/ar.a.10119

  • 25.

    Hsieh YF, Wang T, Turner CH. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation. Bone. 1999;25(3):379–382. PubMed doi:10.1016/S8756-3282(99)00181-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lanyon LE. Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J Biomech. 1987;20(11–12):1083–1093. PubMed doi:10.1016/0021-9290(87)90026-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204(19):3389–3399.

  • 28.

    Umemura Y, Sogo N, Honda A. Effects of intervals between jumps or bouts on osteogenic response to loading. J Appl Physiol. 2002;93(4):1345–1348. PubMed doi:10.1152/japplphysiol.00358.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Babatunde OO, Forsyth JJ. Effects of lifestyle exercise on premenopausal bone health: a randomised controlled trial. J Bone Miner Metab. 2014;32:563–572. doi:10.1007/s00774-013-0527-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kato T, Terashima T, Yamashita T, Hatanaka Y, Honda A, Umemura Y. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol. 2006;100(3):839–843. PubMed doi:10.1152/japplphysiol.00666.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Niu K, Ahola R, Guo H, et al. Effect of office-based brief high-impact exercise on bone mineral density in healthy premenopausal women: the Sendai Bone Health Concept Study. J Bone Miner Metab. 2010;28(5):568–577. PubMed doi:10.1007/s00774-010-0163-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Heinonen A, Kannus P, Sievänen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet. 1996;348(9038):1343–1347. doi:10.1016/S0140-6736(96)04214-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lees A. Methods of impact absorption when landing from a jump. Eng Med. 1981;10(4):207–211. doi:10.1243/EMED_JOUR_1981_010_055_02

  • 34.

    McNitt-Gray JL. Kinetics of the lower extremities during drop landings from three heights. J Biomech. 1993;26(9):1037–1046. PubMed doi:10.1016/S0021-9290(05)80003-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    van Ingen Schenau GJ, Bobbert MF, de Haan A. Does elastic energy enhance work and efficiency in the stretch-shortening cycle? J Appl Biomech. 1997;13(4):389–415. doi:10.1123/jab.13.4.389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Lees A, Vanrenterghem J, De Clercq D. Understanding how an arm swing enhances performance in the vertical jump. J Biomech. 2004;37(12):1929–1940. PubMed doi:10.1016/j.jbiomech.2004.02.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Richter A, Räpple S, Kurz G, Schwameder H. Countermovement jump in performance diagnostics: use of the correct jumping technique. Eur J Sport Sci. 2011;12(3):231–237. doi:10.1080/17461391.2011.566369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ebben WP, Fauth ML, Kaufmann CE, Petushek EJ. Magnitude and rate of mechanical loading of a variety of exercise modes. J Strength Cond Res. 2010;24(1):213–217. PubMed doi:10.1519/JSC.0b013e3181c27da3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Young WB, Pryor JF, Wilson GJ. Effect of instructions on characteristics of countermovement and drop jump performance. J Strength Cond Res. 1995;9(4):232–236.

    • Search Google Scholar
    • Export Citation
  • 40.

    Bassey EJ, Ramsdale SJ. Weight-bearing exercise and ground reaction forces: a 12-month randomized controlled trial of effects on bone mineral density in healthy postmenopausal women. Bone. 1995;16(4):469–476.

    • Search Google Scholar
    • Export Citation
  • 41.

    Hansen KT, Cronin JB, Newton MJ. Three methods of calculating force-time variables in the rebound jump squat. J Strength Cond Res. 2011;25(3):867–871. PubMed doi:10.1519/JSC.0b013e3181c69f0a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Wulf G, Dufek JS. Increased jump height with an external focus due to enhanced lower extremity joint kinetics. J Mot Behav. 2009;41(5):401–409. PubMed doi:10.1080/00222890903228421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Leard JS, Cirillo MA, Katsnelson E, et al. Validity of two alternative systems for measuring vertical jump height. J Strength Cond Res. 2007;21(4):1296–1299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Cohen J. Statistical Power Analysis for the Behavioural Science. Hillside, NJ: Lawrence Erlbaum Associates; 1988.

  • 45.

    O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech. 1982;15(10):767–781. doi:10.1016/0021-9290(82)90092-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):45–50. PubMed doi:10.1097/00003677-200301000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Bobbert MF, Gerritsen KGM, Litjens MCA, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):1402–1412. PubMed doi:10.1097/00005768-199611000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Zhao R, Zhao M, Zhang L. Efficiency of jumping exercise in improving bone mineral density among premenopausal women: a meta-analysis. Sports Med. 2014;44(10):1393–1402. PubMed doi:10.1007/s40279-014-0220-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 91 91 10
Full Text Views 4 4 0
PDF Downloads 1 1 0