Effects of White Noise Achilles Tendon Vibration on Quiet Standing and Active Postural Positioning

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Applying white noise vibration to the ankle tendons has previously been used to improve passive movement detection and alter postural control, likely by enhancing proprioceptive feedback. The aim of the present study was to determine if similar methods focused on the ankle plantarflexors affect the performance of both quiet standing and an active postural positioning task, in which participants may be more reliant on proprioceptive feedback from actively contracting muscles. Twenty young, healthy participants performed quiet standing trials and active postural positioning trials designed to encourage reliance on plantarflexor proprioception. Performance under normal conditions with no vibration was compared to performance with 8 levels of vibration amplitude applied to the bilateral Achilles tendons. Vibration amplitude was set either as a percentage of sensory threshold (n = 10) or by root-mean-square (RMS) amplitude (n = 10). No vibration amplitude had a significant effect on quiet standing. In contrast, accuracy of the active postural positioning task was significantly (P = .001) improved by vibration with an RMS amplitude of 30 μm. Setting vibration amplitude based on sensory threshold did not significantly affect postural positioning accuracy. The present results demonstrate that appropriate amplitude tendon vibration may hold promise for enhancing the use of proprioceptive feedback during functional active movement.

Sacco, Gaffney, and Dean are with the Division of Physical Therapy, Medical University of South Carolina, Charleston, SC. Dean is also with Ralph H. Johnson Dept of Veterans Affairs Medical Center, Charleston, SC.

Address author correspondence to Jesse C. Dean at deaje@musc.edu.
  • 1.

    AimonettiJM, HospodV, RollJP, Ribot-CiscarE. Cutaneous afferents provide a neuronal population vector that encodes the orientation of human ankle movements. J Physiol. 2007;580:649–658. doi:10.1113/jphysiol.2006.123075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    AimonettiJM, RollJP, HospodV, Ribot-CiscarE. Ankle joint movements are encoded by both cutaneous and muscle afferents in humans. Exp Brain Res. 2012;221:167–176. PubMed doi:10.1007/s00221-012-3160-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    ProskeU, GandeviaSC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92:1651–1697. PubMed doi:10.1152/physrev.00048.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    ConnellLA, LincolnNB, RadfordKA. Somatosensory impairments after stroke: frequency of different deficits and their recovery. Clin Rehabil. 2008;22:758–767. PubMed doi:10.1177/0269215508090674

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    van DeursenRW, SimoneauGG. Foot and ankle sensory neuropathy, proprioception, and postural stability. J Orthop Sports Phys Ther. 1999;29:718–726. doi:10.2519/jospt.1999.29.12.718

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    GreenAM, AngelakiDE. Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol. 2010;20:353–360. PubMed doi:10.1016/j.conb.2010.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    HorakFB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?Age Ageing. 2006;35(suppl 2):ii7–ii11. doi:10.1093/ageing/afl077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    NiamS, CheungW, SullivanPE, KentS. Balance and physical impairments after stroke. Arch Phys Med Rehabil. 1999;80:1227–1233. PubMed doi:10.1016/S0003-9993(99)90020-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    ChowCC, ImhoffTT, CollinsJJ. Enhancing aperiodic stochastic resonance through noise modulation. Chaos. 1998;8:616–620. PubMed doi:10.1063/1.166343

  • 10.

    MossF, WardLM, SannitaWG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophys. 2004;115:267–281. doi:10.1016/j.clinph.2003.09.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    CollinsJJ, ImhoffTT, GriggP. Noise-enhanced tactile sensation. Nature. 1996;383:770. PubMed doi:10.1038/383770a0

  • 12.

    RichardsonKA, ImhoffTT, GriggP, CollinsJJ. Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli. Chaos. 1998;8:599–603. PubMed doi:10.1063/1.166341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    WellsC, WardLM, ChuaR, InglisJT. Touch noise increases vibrotactile sensitivity in old and young. Psych Sci. 2005;16:313–320. doi:10.1111/j.0956-7976.2005.01533.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    PriplataAA, NiemiJB, HarryJD, LipsitzLA, CollinsJJ. Vibrating insoles and balance control in elderly people. Lancet. 2003;362:1123–1124. doi:10.1016/S0140-6736(03)14470-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    PriplataAA, PatrittiBL, NiemiJB, et al. Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol. 2006;59:4–12. PubMed doi:10.1002/ana.20670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    LipsitzLA, LoughM, NiemiJ, TravisonT, HowlettH, ManorB. A shoe insole delivering vibratory noise improves balance and gait in healthy elderly people. Arch Phys Med Rehabil. 2015;96:432–439. PubMed doi:10.1016/j.apmr.2014.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    GalicaAM, KangHG, PriplataAA, et al. Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture. 2009;30:383–387. PubMed doi:10.1016/j.gaitpost.2009.07.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    StephenDG, WilcoxBJ, NiemiJB, FranzJ, KerriganDC, D’AndreaSE. Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers. Gait Posture. 2012;36:537–540. doi:10.1016/j.gaitpost.2012.05.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    CordoP, InglisJT, VerschuerenS, et al. Noise in human muscle spindles. Nature. 1996;383:769–770. PubMed doi:10.1038/383769a0

  • 20.

    FallonJB, CarrRW, MorganDL. Stochastic resonance in muscle receptors. J Neurophysiol. 2004;91:2429–2436. PubMed doi:10.1152/jn.00928.2003

  • 21.

    Ribot-CiscarE, HospodV, AimonettiJM. Noise-enhanced kinaesthesia: a psychophysical and microneurographic study. Exp Brain Res. 2013;228:503–511. PubMed doi:10.1007/s00221-013-3581-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    BorelL, Ribot-CiscarE. Improving postural control by applying mechanical noise to ankle muscle tendons. Exp Brain Res. 2016;234:2305–2314. PubMed doi:10.1007/s00221-016-4636-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mendez-BalbuenaI, ManjarrezE, Schulte-MontingJ, et al. Improved sensorimotor performance via stochastic resonance. J Neurosci. 2012;32:12612–12618. PubMed doi:10.1523/JNEUROSCI.0680-12.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    LiuW, LipsitzLA, Montero-OdassoM, BeanJ, KerriganDC, CollinsJJ. Noise-enhanced vibrotactile sensitivity in older adults, patients with stroke, and patients with diabetic neuropathy. Arch Phys Med Rehabil. 2002;83:171–176. PubMed doi:10.1053/apmr.2002.28025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    KuritaY, ShinoharaM, UedaJ. Wearable sensorimotor enhancer for fingertip based on stochastic resonance effect. IEEE Trans Human-Mach Syst. 2013;43:333–337. doi:10.1109/TSMC.2013.2242886

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    LakshminarayananK, LauerAW, RamakrishnanV, WebsterJG, SeoNJ. Application of vibration to wrist and hand skin affects fingertip tactile sensation. Phys Rep. 2015;3:12465. doi:10.14814/phy2.12465

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    AmanJE, ElangovanN, YehIL, KonczakJ. The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Hum Neurosci. 2015;8:1075. PubMed doi:10.3389/fnhum.2014.01075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    HillierS, ImminkM, ThewlisD. Assessing proprioception: a systematic review of possibilities. Neurorehabil Neural Repair. 2015;29:933–949. doi:10.1177/1545968315573055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    NagaiK, YamadaM, TanakaB, et al. Effects of balance training on muscle coactivation during postural control in older adults: a randomized controlled trial. J Gerontol: Med Sci. 2012;67:882–889. doi:10.1093/gerona/glr252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    MaranesiE, FiorettiS, GhettiGG, et al. The surface electromyographic evaluation of the Functional Reach in elderly subjects. J Electromyogr Kinesiol. 2016;26:102–110. PubMed doi:10.1016/j.jelekin.2015.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    HubbuchJE, BennettBW, DeanJC. Proprioceptive feedback contributes to the adaptation toward an economical gait pattern. J Biomech. 2015;48:2925–2931. doi:10.1016/j.jbiomech.2015.04.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    FloydLM, HolmesTC, DeanJC. Reduced effects of tendon vibration with increased task demand during active, cyclical ankle movements. Exp Brain Res. 2014;232:283–292. PubMed doi:10.1007/s00221-013-3739-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    RolkeR, MagerlW, Andrews CampbellK, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10:77. PubMed doi:10.1016/j.ejpain.2005.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    FallonJB, MacefieldVG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve. 2007;36:21–29. PubMed doi:10.1002/mus.20796

  • 35.

    KavounoudiasA, GilhodesJC, RollR, RollJP. From balance regulation to body orientation: two goals for muscle proprioceptive information processing?Exp Brain Res. 1999;124:80–88. doi:10.1007/s002210050602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    KuznetsovNA, RileyMA. The role of task constraints in relating laboratory and clinical measures of balance. Gait Posture. 2015;42:275–279. PubMed doi:10.1016/j.gaitpost.2015.05.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    LacourM, Bernard-DemanzeL, DumitrescuM. Posture control, aging, and attention resources: models and posture-analysis methods. Clin Neurophysiol. 2008;38:411–421. doi:10.1016/j.neucli.2008.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Di GiulioI, MaganarisCN, BaltzopoulosV, LoramID. The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. J Physiol. 2009;587:2399–2416. PubMed doi:10.1113/jphysiol.2009.168690

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    MagalhaesFH, KohnAF. Effectiveness of electrical noise in reducing postural sway: a comparison between imperceptible stimulation applied to the anterior and to the posterior leg muscles. Eur J Appl Physiol. 2014;114:1129–1141. PubMed doi:10.1007/s00421-014-2846-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ribot-CiscarE, VedelJP, RollJP. Vibration sensitivity of slowly and rapidly adapting cutaneous mechanoreceptors in the human foot and leg. Neurosci Lett. 1989;104:130–135. doi:10.1016/0304-3940(89)90342-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    ProskeU. What is the role of muscle receptors in proprioception?Muscle Nerve. 2005;31:780–787. PubMed doi:10.1002/mus.20330

  • 42.

    HospodV, AimonettiJM, RollJP, Ribot-CiscarE. Changes in human muscle spindle sensitivity during a proprioceptive attention task. J Neurosci. 2007;27:5172–5178. PubMed doi:10.1523/JNEUROSCI.0572-07.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Ribot-CiscarE, HospodV, RollJP, AimonettiJM. Fusimotor drive may adjust muscle spindle feedback to task requirements in humans. J Neurophysiol. 2009;101:633–640. doi:10.1152/jn.91041.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    PeterkaRJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88:1097–1118. PubMed doi:10.1152/jn.2002.88.3.1097

  • 45.

    JekaJ, KiemelT, CreathR, HorakF, PeterkaR. Controlling human upright posture: velocity information is more accurate than position or acceleration. J Neurophysiol. 2004;92:2368–2379. PubMed doi:10.1152/jn.00983.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    HatzitakiV, PavlouM, BronsteinAM. The integration of multiple proprioceptive information: effect of ankle tendon vibration on postural responses to platform tilt. Exp Brain Res. 2004;154:345–354. PubMed doi:10.1007/s00221-003-1661-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    DeanJC. Proprioceptive feedback and preferred patterns of human movement. Exerc Sport Sci Rev. 2013;41:36–43. doi:10.1097/JES.0b013e3182724bb0

All Time Past Year Past 30 Days
Abstract Views 92 92 5
Full Text Views 4 4 1
PDF Downloads 0 0 0