Joint Moment-Angle Properties of the Hip Extensors in Subjects With and Without Patellofemoral Pain

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Strength deficits of hip extension in individuals with patellofemoral syndrome are commonly reported in literature. No literature to date has examined these deficits with variable positions of the knee and hip; altering knee angle alters the length and therefore potentially the force produced by the biarticular muscles. Beyond strength, neuromuscular control can also be assessed through the analysis of isometric joint moment steadiness. Subjects consisted of a group of individuals with patellofemoral syndrome (n = 9), and a group of age- and size-matched controls with no symptoms (n = 9). Maximum isometric joint moments for hip extension were measured at 4 points within the joint’s range of motion, at 2 different knee positions (0° and 90°) for each group. The joint moment signals were analyzed by computing signal Coefficient of Variation (CV). The results indicate that no significant differences were found between the groups of subjects for the hip extension moments when the knee was extended. However, there was a significant difference between the groups for the joint moments of hip extension with the knee flexed at all 4 hip positions. Results also showed hip extension CV values to be significantly higher in the patellofemoral group compared with the control group, indicating greater signal noise and therefore poorer neuromuscular control of the hip extensor musculature. This study demonstrated that individuals with patellofemoral syndrome have reduced hip extension strength and reduced neuromuscular control with the knee flexed compared with a control group. These results have implications for the etiology of patellofemoral syndrome and its rehabilitation.

Kindel is with the Dept of Physical Therapy, Saint Francis University, Loretto, PA. Challis is with the Dept of Kinesiology, Pennsylvania State University, University Park, PA.

Address author correspondence to Curtis Kindel at ckindel@francis.edu.
  • 1.

    Davis IS, Powers C. Patellofemoral pain syndrome: proximal, distal, and local factors; An international research retreat. J Orthop Sports Phys Ther. 2010;40:1–48. PubMed doi:10.2519/jospt.2010.0302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Lankhorst NE, Bierma-Zeinstra SM, van Middelkoop M. Factors associated with patellofemoral pain syndrome: a systematic review. Br J Sports Med. 2013;47:193–206. PubMed doi:10.1136/bjsports-2011-090369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barber Foss KD, Myer GD, Chen SS, Hewett TE. Expected prevalence from the differential diagnosis of anterior knee pain in adolescent female athletes during preparticipation screening. J Athl Train. 2012;47:519–524. PubMed doi:10.4085/1062-6050-47.5.01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33:639–646. doi:10.2519/jospt.2003.33.11.639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Souza RB, Powers CM. Difference in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39:12–19. doi:10.2519/jospt.2009.2885

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspecitve. J Orthop Sports Phys Ther. 2010;40:42–51. doi:10.2519/jospt.2010.3337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Brindle TJ, Mattacola C, McCrory J. Electromyographic changes in the gluteus medius during stair ascent and descent in subjects with anterior knee pain. Knee Surg Sports Traumatol Arthrosc. 2003;11:244–251. doi:10.1007/s00167-003-0353-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cowan SM, Crossley KM, Bennell KL. Altered hip and trunk muscle function in individuals with patellofemoral pain. Br J Sports Med. 2009;43:584–588. doi:10.1136/bjsm.2008.053553

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kindel C, Challis JH. Joint moment-angle properties of the hip abductors and hip extensors. Physiother Theory Pract. 2017;33(7):568–575. doi:10.1080/09593985.2017.1323357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Enoka RM, Christou EA, Hunter SK, et al. Mechanisms that contribute to differences in motor performance between young and old adults. J Electromyogr Kinesol. 2003;13:1–12. doi:10.1016/S1050-6411(02)00084-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Tracy BL, Enoka RM. Older adults are less steady during submaximal isometric contractions with the knee extensor muscles. J Appl Physiol. 2002;92:1004–1012. doi:10.1152/japplphysiol.00954.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hamilton AF, Jones KE, Wolpert DM. The scaling of motor noise with muscle strength and motor unit number in humans. Exp Brain Res. 2004;157:417–430. PubMed doi:10.1007/s00221-004-1856-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marmon AR, Pascoe MA, Schwartz RS, Enoka RM. Associations among strength, steadiness, and hand function across the adult life span. Med Sci Sports Exerc. 2011;43:560–567. doi:10.1249/MSS.0b013e3181f3f3ab

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Moritz CT, Barry BK, Pascoe MA, Enoka RM. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol. 2005;93:2449–2459. PubMed doi:10.1152/jn.01122.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci. 2002;57(3):B115–B125. PubMed doi:10.1093/gerona/57.3.B115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88:2297–2301. PubMed doi:10.1073/pnas.88.6.2297

  • 17.

    Roelfsema F, Pincus SM, Veldhuis JD. Patients with Cushing’s disease secrete adrenocorticotropin and cortisol jointly more asynchronously than healthy subjects. J Clin Endocrinol Metab. 1998;83:688–692. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Challis JH. Aging, regularity and variability in maximum isometric moments. J Biomech. 2006;39:1543–1546. PubMed doi:10.1016/j.jbiomech.2005.04.008

  • 19.

    Forrest SM, Challis JH, Winter SL. The effect of signal acquisition and processing choices on ApEn values: towards a “gold standard” for distinguishing effort levels from isometric force records. Med Eng Phys. 2014;36:676–683. PubMed doi:10.1016/j.medengphy.2014.02.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994;49:1685–1689.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Vaillancourt DE, Newell KM. Aging and the time and frequency structure of force output variability. J Appl Physiol. 2003;94:903–912. PubMed doi:10.1152/japplphysiol.00166.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Potvin P, Schutz R. Statistical power for the two-factor repeated measures ANOVA. Behav Res Methods Instrum Comput. 2000;32:347–356. PubMed doi:10.3758/BF03207805

  • 23.

    Coldham F, Lewis J, Lee H. The reliability of one vs three grip trials in symptomatic and asymptomatic subjects. J Hand Ther. 2006;19:318–327. PubMed doi:10.1197/j.jht.2006.04.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kennedy D, Jerosch-Herold C, Hickson M. The reliability of one vs. three trials of pain-free grip strength in subjects with rheumatoid arthritis. J Hand Ther. 2010;23:384–391. doi:10.1016/j.jht.2010.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Shrout PE, Fleiss JL. Intraclass correlations - Uses in assessing rater reliability. Psychol Bull. 1979;86:420–428. PubMed doi:10.1037/0033-2909.86.2.420

  • 26.

    Caldwell LS, Chaffin DB, Dukes-Dobos FN, et al. A proposed standard procedure for static muscle strength testing. Am Ind Hyg Assoc J. 1974;35:201–206. PubMed doi:10.1080/0002889748507023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bazett-Jones DM, Cobb SC, Joshi MN, Cashin SE, Earl JE. Normalizing hip muscle strength: establishing body-size-independent measurements. Arch Phys Med Rehabil. 2011;92:76–82. doi:10.1016/j.apmr.2010.08.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rose MH, Bandholm T, Jensen BR. Approximate entropy based on attempted steady isometric contractions with the ankle dorsal- and plantarflexors: reliability and optimal sampling frequency. J Neurosci Methods. 2009;177:212–216. doi:10.1016/j.jneumeth.2008.09.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J. A power primer. Psychol Bull. 1992;112:155–159. doi:10.1037/0033-2909.112.1.155

  • 30.

    Draper CE, Besier TF, Fredericson M, et al. Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Ortho Res. 2011;29:312–317. doi:10.1002/jor.21253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Dostal WF, Soderberg GL, Andrews JG. Actions of hip muscles. Phys Ther. 1986;66:351–359. PubMed doi:10.1093/ptj/66.3.351

  • 32.

    Delp SL, Hess WE, Hungerford DS, Jones LC. Variation of rotation moment arms with hip flexion. J Biomech. 1999;32:493–501. PubMed doi:10.1016/S0021-9290(99)00032-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Distefano LJ, Blackburn JT, Marshall SW, Padua DA. Gluteal muscle activation during common therapeutic exercises. J Orthop Sports Phys Ther. 2009;39:532–540. doi:10.2519/jospt.2009.2796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Giordano J, Abramson K, Boswell MV. Pain assessment: subjectivity, objectivity, and the use of neurotechnology. Pain Physician. 2010;13(4):305–315. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Xu L, Ivanov PC, Hu K, Chen Z, Carbone A, Stanley HE. Quantifying signals with power-law correlations: a comparative study of detrended fluctuation analysis and detrended moving average techniques. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(5):051101. doi:10.1103/PhysRevE.71.051101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Prins MR, van der Wurff P. Females with patellofemoral pain syndrome have weak hip muscles: a systematic review. Aust J Physiother. 2009;55:9–15. PubMed doi:10.1016/S0004-9514(09)70055-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 104 104 20
Full Text Views 11 11 0
PDF Downloads 3 3 0