Identification of Movement Strategies During the Sit-to-Walk Movement in Patients With Knee Osteoarthritis

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Patients with osteoarthritis of the knee commonly alter their movement to compensate for lower limb weakness and alleviate joint pain. Movement alterations may lead to weight-bearing asymmetries, and potentially to the progression of the disease. This study presents a novel numerical procedure for the identification of sit-to-walk strategies and differences in movement habits between control adults and persons with knee osteoarthritis. Ten control and 12 participants with osteoarthritis performed the sit-to-walk task in a motion capture laboratory. Participants sat on a stool with the height adjusted to 100% of their knee height, then stood and walked to pick up an object from a table in front of them. Different movement strategies were identified by means of hierarchical clustering. Trials were also classified as to whether the left and right extremities used a bilateral or an asymmetrical strategy. Participants with osteoarthritis used significantly more asymmetrical arm strategies (P = .03) while adopting the pushing through the chair strategy more often than the control subjects (P = .02). The results demonstrated that the 2 groups favor different sit-to-walk strategies. Asymmetrical arm behavior possibly indicates a compensation for the weakness of the affected leg. The proposed procedure may be useful to rapidly assess postoperative outcomes and developing rehabilitation strategies.

Komaris, Govind, Murphy, and Riches are with the Dept of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland. Ewen is with the Orthopaedic Dept, Golden Jubilee National Hospital, Glasgow, Scotland.

Address author correspondence to Dimitrios Sokratis Komaris at dimitrios.komaris@strath.ac.uk.
  • 1.

    Gustafson JA, Gorman S, Fitzgerald GK, Farrokhi S. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability. Gait Posture. 2016;43:210–215. PubMed doi:10.1016/j.gaitpost.2015.09.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Schmitt D, Vap A, Queen RM. Effect of end-stage hip, knee, and ankle osteoarthritis on walking mechanics. Gait Posture. 2015;42(3):373–379. PubMed doi:10.1016/j.gaitpost.2015.07.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Arnold J, Mackintosh S, Jones S, Thewlis D. Altered dynamic foot kinematics in people with medial knee osteoarthritis during walking: a cross-sectional study. Knee. 2014;21(6):1101–1106. PubMed doi:10.1016/j.knee.2014.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Koyama Y, Tateuchi H, Nishimura R, et al. Relationships between performance and kinematic/kinetic variables of stair descent in patients with medial knee osteoarthritis: an evaluation of dynamic stability using an extrapolated center of mass. Clin Biomech. 2015;30(10):1066–1070. PubMed doi:10.1016/j.clinbiomech.2015.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hicks-Little CA, Peindl RD, Fehring TK, Odum SM, Hubbard TJ, Cordova ML. Temporal-spatial gait adaptations during stair ascent and descent in patients with knee osteoarthritis. J Arthroplasty. 2012;27(6):1183–1189. PubMed doi:10.1016/j.arth.2012.01.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bouchouras G, Patsika G, Hatzitaki V, Kellis E. Kinematics and knee muscle activation during sit-to-stand movement in women with knee osteoarthritis. Clin Biomech. 2015;30(6):599–607. PubMed doi:10.1016/j.clinbiomech.2015.03.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Preece SJ, Cacciatore T, Jones R. Altered lower limb moments in patients with knee osteoarthritis during a controlled sit-to-stand movement. Gait Posture. 2015;42:74. doi:10.1016/j.gaitpost.2015.03.127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Anan M, Shinkoda K, Suzuki K, Yagi M, Ibara T, Kito N. Do patients with knee osteoarthritis perform sit-to-stand motion efficiently?Gait Posture. 2015;41(2):488–492. PubMed doi:10.1016/j.gaitpost.2014.11.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Baert IA, Mahmoudian A, Jonkers I, et al. Different alterations in the sit to stand movement pattern in women with early and established medial compartment knee osteoarthritis. Osteoarthritis Cartilage. 2013;21:S95. doi:10.1016/j.joca.2013.02.203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Davidson BS, Judd DL, Thomas AC, Mizner RL, Eckhoff DG, Stevens-Lapsley JE. Muscle activation and coactivation during five-time-sit-to-stand movement in patients undergoing total knee arthroplasty. J Electromyogr Kinesiol. 2013;23(6):1485–1493. PubMed doi:10.1016/j.jelekin.2013.06.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Segal NA, Boyer ER, Wallace R, Torner JC, Yack HJ. Association between chair stand strategy and mobility limitations in older adults with symptomatic knee osteoarthritis. Arch Phys Med Rehabil. 2013;94(2):375–383. PubMed doi:10.1016/j.apmr.2012.09.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Turcot K, Armand S, Fritschy D, Hoffmeyer P, Suva D. Sit-to-stand alterations in advanced knee osteoarthritis. Gait Posture. 2012;36(1):68–72. PubMed doi:10.1016/j.gaitpost.2012.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mills K, Hunt MA, Leigh R, Ferber R. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking. Clin Biomech. 2013;28(7):713–724. PubMed doi:10.1016/j.clinbiomech.2013.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin Biomech. 2009;24(10):833–841. PubMed doi:10.1016/j.clinbiomech.2009.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hortobagyi T, Westerkamp L, Beam S, et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin Biomech. 2005;20(1):97–104. PubMed doi:10.1016/j.clinbiomech.2004.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Shakoor N, Hurwitz DE, Block JA, Shott S, Case JP. Asymmetric knee loading in advanced unilateral hip osteoarthritis. Arthritis Rheum. 2003;48(6):1556–1561. PubMed doi:10.1002/art.11034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    McMahon M, Block A. The risk of contralateral total knee arthroplasty after knee replacement for osteoarthritis. J Rheumatol. 2003;30(8):1822–1824. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Abujaber SB, Marmon AR, Pozzi F, Rubano JJ, Zeni JA Jr. Sit-to-stand biomechanics before and after total hip arthroplasty. J Arthroplasty. 2015;30(11):2027–2033. PubMed doi:10.1016/j.arth.2015.05.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bowser B, O’Rourke S, Brown CN, White L, Simpson KJ. Sit-to-stand biomechanics of individuals with multiple sclerosis. Clin Biomech. 2015;30(8):788–794. PubMed doi:10.1016/j.clinbiomech.2015.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Spyropoulos G, Tsatalas T, Tsaopoulos DE, Sideris V, Giakas G. Biomechanics of sit-to-stand transition after muscle damage. Gait Posture. 2013;38(1):62–67. PubMed doi:10.1016/j.gaitpost.2012.10.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Butler PB, Nene AV, Major RE. Biomechanics of transfer from sitting to the standing position in some neuromuscular diseases. Physiotherapy. 1991;77(8):521–525. doi:10.1016/S0031-9406(10)61866-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Dolecka UE, Ownsworth T, Kuys SS. Comparison of sit-to-stand strategies used by older adults and people living with dementia. Arch Gerontol Geriatr. 2015;60(3):528–534. PubMed doi:10.1016/j.archger.2014.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sagawa Y, Armand S, Lubbeke A, Hoffmeyer P, Suva D, Turcot K. Do patients with knee osteoarthritis use different strategies during sit-to-stand task? Paper presented at: XXIV Congress of the International Society of Biomechanics; 2013; Brazil.

    • Export Citation
  • 24.

    Gillette JC, Stevermer CA. The effects of symmetric and asymmetric foot placements on sit-to-stand joint moments. Gait Posture. 2012;35(1):78–82. PubMed doi:10.1016/j.gaitpost.2011.08.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bohannon WR, Corrigan LD. Strategies community dwelling elderly women employ to ease the task of standing up from household surfaces. Top Geriatr Rehabil. 2003;19(2):137–144. doi:10.1097/00013614-200304000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hughes MA, Weiner DK, Schenkman ML, Long RM, Studenski SA. Chair rise strategies in the elderly. Clin Biomech. 1994;9(3):187–192. doi:10.1016/0268-0033(94)90020-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Shaw CT, King GP. Using cluster analysis to classify time series. Phys D Nonlinear Phenom. 1992;58(1–4):288–298. doi:10.1016/0167-2789(92)90117-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Warren Liao T. Clustering of time series data—a survey. Pattern Recognit. 2005;38(11):1857–1874. doi:10.1016/j.patcog.2005.01.025

  • 29.

    Golay X, Kollias S, Stoll G, Meier D, Valavanis A, Boesiger P. A new correlation-based fuzzy logic clustering algorithm for fMRI. Magn Reson Med. 1998;40(2):249–260. PubMed doi:10.1002/mrm.1910400211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Aghabozorgi S, Teh YW. Stock market co-movement assessment using a three-phase clustering method. Expert Syst Appl. 2014;41(4 pt 1):1301–1314. doi:10.1016/j.eswa.2013.08.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Shumway RH. Time-frequency clustering and discriminant analysis. Stat Probab Lett. 2003;63(3):307–314. doi:10.1016/S0167-7152(03)00095-6

  • 32.

    Ait El Menceur MO, Pudlo P, Gorce P, Lepoutre F-X. An automatic procedure for identifying alternative automobile ingress movements in young and elderly populations with or without prostheses. Int J Ind Ergon. 2009;39(6):966–980. doi:10.1016/j.ergon.2009.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Lempereur M, Pudlo P, Gorce P, Lepoutre FX. Identification of alternative movement techniques during the car entering movement. Paper presented at: 2005 IEEE International Conference on Systems, Man and Cybernetics, Vol 4; October 10–12, 2005:3804–3809.

    • Export Citation
  • 34.

    Park W, Martin BJ, Choe S, Chaffin DB, Reed MP. Representing and identifying alternative movement techniques for goal-directed manual tasks. J Biomech. 2005;38(3):519–527. PubMed doi:10.1016/j.jbiomech.2004.04.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Gower JC, Legendre P. Metric and Euclidean properties of dissimilarity coefficients. J Classif. 1986;3(1):5–48. doi:10.1007/BF01896809

  • 36.

    Strehl A, Ghosh J, Mooney R. Impact of similarity measures on web-page clustering. Paper presented at: Proceedings of the 17th National Conference on Artificial Intelligence: Workshop of Artificial Intelligence for Web Search (AAAI 2000); July 30–31, 2000:58–64; Austin, TX.

    • Export Citation
  • Huang A. Similarity measures for text document clustering. Paper presented at: Proceedings of the Sixth New Zealand Computer Science Research Student Conference (NZCSRSC2008), Christchurch, New Zealand; 2008.

    • Export Citation
  • 38.

    Everitt BS, Landau S, Leese M, Stahl D. Cluster Analysis. 5th ed. King’s College London, UK: Wiley; 2010.

  • 39.

    Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis. 7th ed. London, UK: Pearson Education Limited; 2009.

  • 40.

    Nanopoulos A, Alcock R, Manolopoulos Y. Feature-based classification of time-series data. Int J Comput Res. 2001;10:49–61.

  • 41.

    Plug-in Gait Product Guide-Foundation Notes. revision 2.0 ed. Oxford, UK: Vicon Motion Systems Limited; 2010:69.

  • 42.

    Farquhar SJ, Kaufman KR, Snyder-Mackler L. Sit-to-stand 3 months after unilateral total knee arthroplasty: comparison of self-selected and constrained conditions. Gait Posture. 2009;30(2):187–191. PubMed doi:10.1016/j.gaitpost.2009.04.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kerr A, Durward B, Kerr KM. Defining phases for the sit-to-walk movement. Clin Biomech. 2004;19(4):385–390. doi:10.1016/j.clinbiomech.2003.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Drillis K, Contini R. Body Segment Parameters. New York, NY: New York University;1964.

  • 45.

    Barreca S, Sigouin SC, Lambert C, Ansley B. Effects of extra training on the ability of stroke survivors to perform an independent sit-to-stand: a randomized controlled trial. J Geriatr Phys Ther. 2004;27(2):59–64. doi:10.1519/00139143-200408000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Nuzik S, Lamp R, VanSant A, Hirt S. Sit-to-stand movement pattern: a kinematic study. Phys Ther. 1986;66(11):1708–1713. PubMed doi:10.1093/ptj/66.11.1708

  • 47.

    Arborelius UP, Wretenberg PER, Lindberg F. The effects of armrests and high seat heights on lower-limb joint load and muscular activity during sitting and rising. Ergonomics. 1992;35(11):1377–1391. PubMed doi:10.1080/00140139208967399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Arnold J, Mackintosh S, Jones S, Thewlis D. Asymmetry of lower limb joint loading in advanced knee osteoarthritis. Gait Posture. 2014;39(suppl 1):S20–21. doi:10.1016/j.gaitpost.2014.04.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Runhaar J, Koes BW, Clockaerts S, Bierma-Zeinstra SM. A systematic review on changed biomechanics of lower extremities in obese individuals: a possible role in development of osteoarthritis. Obes Rev. 2011;12(12):1071–1082. PubMed doi:10.1111/j.1467-789X.2011.00916.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ikeda ER, Schenkman ML, Riley PO, Hodge WA. Influence of age on dynamics of rising from a chair. Phys Ther. 1991;71(6):473–481. PubMed doi:10.1093/ptj/71.6.473

  • 51.

    Alexander NB, Schultz AB, Warwick DN. Rising from a chair: effects of age and functional ability on performance biomechanics. J Gerontol. 1991;46(3):M91–M98. PubMed doi:10.1093/geronj/46.3.M91

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    King LK, March L, Anandacoomarasamy A. Obesity & osteoarthritis. Ind J Med Res. 2013;138(2):185–193.

All Time Past Year Past 30 Days
Abstract Views 89 89 12
Full Text Views 2 2 0
PDF Downloads 1 1 0