Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness

in Journal of Applied Biomechanics

Click name to view affiliation

Kentaro ChinoJapan Institute of Sports Sciences

Search for other papers by Kentaro Chino in
Current site
Google Scholar
PubMed
Close
*
and
Hideyuki TakahashiJapan Institute of Sports Sciences

Search for other papers by Hideyuki Takahashi in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, the authors assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, and 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle–torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggests that muscle stiffness of the MG would not be a prominent factor in determining passive ankle joint stiffness and the sex-related difference in the joint stiffness.

The authors are with the Department of Sports Science, Japan Institute of Sports Sciences, Tokyo, Japan.

Chino (kentaro.chino@jpnsport.go.jp) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Gleim GW, McHugh MP. Flexibility and its effects on sports injury and performance. Sports Med. 1997;24(5):289299. PubMed ID: 9368275 doi:10.2165/00007256-199724050-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Knudson D, Magnusson P, McHugh M. Current issues in flexibility fitness. PCPFS Res Dig. 2000;3(10):18.

  • 3.

    Riemann BL, DeMont RG, Ryu K, Lephart SM. The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J Athl Train. 2001;36(4):369375. PubMed ID: 12937478

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech. 2001;16(2):87101. doi:10.1016/S0268-0033(00)00061-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gajdosik RL, Giuliani CA, Bohannon RW. Passive compliance and length of the hamstring muscles of healthy men and women. Clin Biomech. 1990;5(1):2329. doi:10.1016/0268-0033(90)90028-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M. Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports. 1997;7(4):195202. doi:10.1111/j.1600-0838.1997.tb00139.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kubo K, Kanehisa H, Fukunaga T. Is passive stiffness in human muscles related to the elasticity of tendon structures? Eur J Appl Physiol. 2001;85(3–4):226232. PubMed ID: 11560074 doi:10.1007/s004210100463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Chino K, Takahashi H. Measurement of gastrocnemius muscle stiffness by shear wave elastography: association with passive ankle joint stiffness and sex differences. Eur J Appl Physiol. 2016;116(4):823830. doi:10.1007/s00421-016-3339-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hoge KM, Ryan ED, Costa PB, et al. Gender differences in musculotendinous stiffness and range of motion after an acute bout of stretching. J Strength Cond Res. 2010;24(10):26182626. doi:10.1519/JSC.0b013e3181e73974

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Vandervoort AA, Chesworth BM, Cunningham DA, Rechnitzer PA, Paterson DH, Koval JJ. An outcome measure to quantify passive stiffness of the ankle. Can J Public Health. 1992;83(suppl 2):1923.

    • Search Google Scholar
    • Export Citation
  • 11.

    Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):487495. PubMed ID: 23619292 doi:10.1016/j.diii.2013.01.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125133. PubMed ID: 25906424 doi:10.1249/JES.0000000000000049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46(14):23812387. PubMed ID: 23953670 doi:10.1016/j.jbiomech.2013.07.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hirata K, Kanehisa H, Miyamoto-Mikami E, Miyamoto N. Evidence for intermuscle difference in slack angle in human triceps surae. J Biomech. 2015;48(6):12101213. doi:10.1016/j.jbiomech.2015.01.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Maisetti O, Hug F, Bouillard K, Nordez A. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech. 2012;45(1):978984. doi:10.1016/j.jbiomech.2012.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kubo K, Kanehisa H, Azuma K, et al. Muscle architectural characteristics in young and elderly men and women. Int J Sports Med. 2003;24:125130. PubMed ID: 12669259 doi:10.1055/s-2003-38204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gans C, Gaunt AS. Muscle architecture in relation to function. J Biomech. 1991;24(suppl 1):5365. doi:10.1016/0021-9290(91)90377-Y

  • 18.

    Chino K, Takahashi H. The association of muscle and tendon elasticity with passive joint stiffness: in vivo measurements using ultrasound shear wave elastography. Clin Biomech. 2015;30(10):12301235. doi:10.1016/j.clinbiomech.2015.07.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kawakami Y, Kanehisa H, Fukunaga T. The relationship between passive ankle plantar flexion joint torque and gastrocnemius muscle and Achilles tendon stiffness: implications for flexibility. J Orthop Sports Phys Ther. 2008;38(5):269276. PubMed ID: 18448880 doi:10.2519/jospt.2008.2632

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Akagi R, Takahashi H. Acute effect of static stretching on hardness of the gastrocnemius muscle. Med Sci Sports Exerc. 2013;45(7):13481354. PubMed ID: 23299765 doi:10.1249/MSS.0b013e3182850e17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88(3):811816. doi:10.1152/jappl.2000.88.3.811

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mendez J, Keys A. Density and composition of mammalian muscle. Metabolism. 1960;9:184188.

  • 23.

    Chino K, Oda T, Kurihara T, et al. In vivo fascicle behavior of synergistic muscles in concentric and eccentric plantar flexions in humans. J Electromyogr Kinesiol. 2008;18(1):7988. PubMed ID: 17071107 doi:10.1016/j.jelekin.2006.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN. In vivo behaviour of human muscle tendon during walking. Proc Biol Sci. 2001;268(1464):229233. PubMed ID: 11217891 doi:10.1098/rspb.2000.1361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586(1):97106. doi:10.1113/jphysiol.2007.140434

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J Orthop Res. 2011;29(11):17591763. PubMed ID: 21520263 doi:10.1002/jor.21445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Freitas SR, Andrade RJ, Larcoupaille L, Mil-homens P, Nordez A. Muscle and joint responses during and after static stretching performed at different intensities. Eur J Appl Physiol. 2015;115(6):12631272. doi:10.1007/s00421-015-3104-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Salsich GB, Mueller MJ, Sahrmann SA. Passive ankle stiffness in subjects with diabetes and peripheral neuropathy versus an age-matched comparison group. Phys Ther. 2000;80(4):352362. PubMed ID: 10758520 doi:10.1093/ptj/80.4.352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Brown W, Birnstihl EA, Wheeler DW. Leading without authority: an examination of the impact of transformational leadership cooperative extension work groups and teams. J Ext. 1996;34(5):5FEA3. https://www.joe.org/joe/1996october/a3.php. Accessed January 5, 2017.

    • Search Google Scholar
    • Export Citation
  • 30.

    Taylor R. Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr. 1990;6(1):3539. doi:10.1177/875647939000600106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Miyamoto N, Hirata K, Kanehisa H, Yoshitake Y. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle. PLoS ONE. 2015;10(4):e0124311. PubMed ID: 25853777 doi:10.1371/journal.pone.0124311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nordez A, Hug F. Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol. 2010;108(5):13891394. doi:10.1152/japplphysiol.01323.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Bell DR, Blackburn JT, Norcorss MF, et al. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):361367. PubMed ID: 21695466 doi:10.1007/s00167-011-1577-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Miyatani M, Kanehisa H, Ito M, Kawakami Y, Fukunaga T. The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur J Appl Physiol. 2004;91(2–3):264272. doi:10.1007/s00421-003-0974-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2605 1102 15
Full Text Views 89 15 0
PDF Downloads 70 19 0