Reliability of the Load–Velocity Relationship Obtained Through Linear and Polynomial Regression Models to Predict the 1-Repetition Maximum Load

Click name to view affiliation

Francisco Luis Pestaña-Melero University of Granada

Search for other papers by Francisco Luis Pestaña-Melero in
Current site
Google Scholar
PubMed
Close
*
,
G. Gregory Haff Edith Cowan University

Search for other papers by G. Gregory Haff in
Current site
Google Scholar
PubMed
Close
*
,
Francisco Javier Rojas University of Granada

Search for other papers by Francisco Javier Rojas in
Current site
Google Scholar
PubMed
Close
*
,
Alejandro Pérez-Castilla University of Granada

Search for other papers by Alejandro Pérez-Castilla in
Current site
Google Scholar
PubMed
Close
*
, and
Amador García-Ramos University of Granada
Catholic University of the Most Holy Concepción

Search for other papers by Amador García-Ramos in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study aimed to compare the between-session reliability of the load–velocity relationship between (1) linear versus polynomial regression models, (2) concentric-only versus eccentric–concentric bench press variants, as well as (3) the within-participants versus the between-participants variability of the velocity attained at each percentage of the 1-repetition maximum. The load–velocity relationship of 30 men (age: 21.2 [3.8] y; height: 1.78 [0.07] m, body mass: 72.3 [7.3] kg; bench press 1-repetition maximum: 78.8 [13.2] kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric–concentric bench press variants in a Smith machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order polynomials (coefficient of variation: 4.39%–4.70%) provided the load–velocity relationship with higher reliability than the second-order polynomials (coefficient of variation: 4.68%–5.04%); (2) the reliability of the load–velocity relationship did not differ between the concentric-only and eccentric–concentric bench press variants; and (3) the within-participants variability of the velocity attained at each percentage of the 1-repetition maximum was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load–velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.

Pestaña-Melero, Rojas, Pérez-Castilla, and García-Ramos are with the Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. Haff is with Center for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Western Australia, Australia. García-Ramos is also with the Faculty of Education, Catholic University of the Most Holy Concepción, CIEDE, Concepción, Chile.

García-Ramos (amagr@ugr.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ruiz JR, Sui X, Lobelo F, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:439. PubMed doi:10.1136/bmj.a439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449 PubMed doi:10.1007/s40279-016-0486-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Spiering B, Kraemer W, Anderson JM, et al. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med. 2008;38(7):527540. PubMed doi:10.2165/00007256-200838070-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663679. PubMed doi:10.2165/00007256-200434100-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ratamess NA, Alvar BA, Evetoch TK, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. doi:10.1249/MSS.0b013e3181915670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load–velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25(1):267270. PubMed doi:10.1519/JSC.0b013e3181b62c5f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load–velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31(7):18971904. PubMed doi:10.1519/JSC.0000000000001657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64(1):8890. doi:10.1080/07303084.1993.10606684

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Picerno P, Iannetta D, Comotto S, et al. 1RM prediction: a novel methodology based on the force–velocity and load–velocity relationships. Eur J Appl Physiol. 2016;116(10):20352043. PubMed doi:10.1007/s00421-016-3457-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(5):347352. doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Balsalobre-Fernandez C, Marchante D, Muñoz-Lopez M, Jimenez SL. Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J Sports Sci. 2018;36:6470. doi:10.1080/02640414.2017.1280610

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bazuelo-Ruiz B, Padial P, García-Ramos A, Morales-Artacho AJ, Miranda MT, Feriche B. Predicting maximal dynamic strength from the load–velocity relationship in squat exercise. J Strength Cond Res. 2015;29(7):19992005. PubMed doi:10.1519/JSC.0000000000000821

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34(12):10991106. doi:10.1080/02640414.2015.1090010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Picerno P. Good practice rules for the assessment of the force–velocity relationship in isoinertial resistance exercises. Asian J Sports Med. 2017;8:e15590. doi:10.5812/asjsm.15590

    • Search Google Scholar
    • Export Citation
  • 15.

    Pallarés JG, Sánchez-Medina L, Pérez CE, De La Cruz-Sánchez E, Mora-Rodriguez R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32(12):11651175. doi:10.1080/02640414.2014.889844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    García-Ramos A, Pestaña-Melero F, Pérez-Castilla A, Rojas F, Haff G. Differences in the load-velocity profile between 4 bench-press variants. Int J Sport Physiol Perform. 2018;13(3):326331. doi:10.1123/ijspp.2017-0158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed doi:10.2165/00007256-200030010-00001

  • 18.

    Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Loturco I, Kobal R, Moraes JE, et al. Predicting the maximum dynamic strength in bench-press: the high-precision of the bar-velocity approach. J Strength Cond Res. 2017;31(4):11271131. PubMed doi:10.1519/JSC.0000000000001670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    García-Ramos A, Pestaña-Melero F, Pérez-Castilla A, Rojas F, Haff G. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32(5):12731279. doi:10.1519/JSC.0000000000001998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. Calculations for reliability (Excel spreadsheet). A New View of Statistics. 2000. http://www.sportsci.org/resource/stats/relycalc.html. Accessed November 14, 2017.

    • Search Google Scholar
    • Export Citation
  • 23.

    Fulton SK, Pyne D, Hopkins W, Burkett B. Variability and progression in competitive performance of Paralympic swimmers. J Sports Sci. 2009;27(5):535539. PubMed doi:10.1080/02640410802641418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Garcia-Ramos A, Jaric S, Padial P, Feriche B. Force–velocity relationship of upper-body muscles: traditional vs. ballistic bench press. J Appl Biomech. 2016;32(2):178185. PubMed doi:10.1123/jab.2015-0162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jaric S. Force–velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36(9):699704. PubMed doi:10.1055/s-0035-1547283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jaric S. Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Med. 2016;46(11):15851589. PubMed doi:10.1007/s40279-016-0531-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sreckovic S, Cuk I, Djuric S, Nedeljkovic A, Mirkov D, Jaric S. Evaluation of force–velocity and power–velocity relationship of arm muscles. Eur J Appl Physiol. 2015;115(8):17791787. PubMed doi:10.1007/s00421-015-3165-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force–velocity profiling during jumping. Front Physiol. 2017;7:677.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2016;32(1):5968. PubMed doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force–velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505510. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Balsalobre-Fernández C, Kuzdub M, Poveda-Ortiz P, Campo-Vecino JD. Validity and reliability of the push wearable device to measure movement velocity during the back squat exercise. J Strength Cond Res. 2016;30(7):19681974. doi:10.1519/JSC.0000000000001284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4315 632 64
Full Text Views 185 60 2
PDF Downloads 123 36 4