Femoral Neck Stress in Older Adults During Stair Ascent and Descent

Click name to view affiliation

Chen Deng Iowa State University

Search for other papers by Chen Deng in
Current site
Google Scholar
PubMed
Close
*
,
Jason C. Gillette Iowa State University

Search for other papers by Jason C. Gillette in
Current site
Google Scholar
PubMed
Close
*
, and
Timothy R. Derrick Iowa State University

Search for other papers by Timothy R. Derrick in
Current site
Google Scholar
PubMed
Close
*
Restricted access

A detailed understanding of the hip loading environment is needed to help prevent hip fractures, minimize hip pain, rehabilitate hip injuries, and design osteogenic exercises for the hip. The purpose of this study was to compare femoral neck stress during stair ascent and descent and to identify the contribution of muscles and reaction forces to the stress environment in mature adult subjects (n = 17; age: 50–65 y). Motion analysis and inverse dynamics were combined with musculoskeletal modeling and optimization, then used as input to an elliptical femoral neck cross-sectional model to estimate femoral neck stress. Peak stress values at the 2 peaks of the bimodal stress curves (stress vs time plot) were compared between stair ascent and descent. Stair ascent had greater compressive stress than descent during the first peak at the anterior (ascent: −18.0 [7.9] MPa, descent: −12.9 [5.4] MPa, P < .001) and posterior (ascent: −34.4 [10.9] MPa, descent: −27.8 [10.1] MPa, P < .001) aspects of the femoral neck cross section. Stair descent had greater tensile stress during both peaks at the superior aspect (ascent: 1.3 [7.0] MPa, descent: 24.8 [9.7] MPa, peak 1: P < .001; ascent: 15.7 [6.1] MPa, descent: 18.0 [8.4] MPa, peak 2: P = .03) and greater compressive stress during the second peak at the inferior aspect (ascent: −43.8 [9.7] MPa, descent: −51.1 [14.3] MPa, P = .004). Understanding this information can provide a more comprehensive view of bone loading at the femoral neck for older population.

Deng is with the Department of Kinesiology, Iowa State University, Ames, IA, USA. Gillette and Derrick are with Iowa State University, Ames, IA, USA.

Deng (chend@iastate.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Graves EJ. Detailed diagnoses and procedures, National Hospital Discharge Survey. Vital Health Stat. 1990;13(113):1225.

  • 2.

    Kenzora J, McCarthy R, Lowell JD, Sledge CB. Hip fracture mortality. Relation to age, treatment, preoperative illness, time of surgery, and complications. Clin Orthop Relat Res. 1984;(186):4556. PubMed ID: 6723159

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    White BL, Fisher WD, Laurin CA. Rate of mortality for elderly patients after fracture of the hip in the 1980’s. J Bone Joint Surg Am. 1987;69(9):13351340. PubMed ID: 3440792

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stevens JA, Rudd RA. The impact of decreasing U.S. hip fracture rates on future hip fracture estimates. Osteoporos Int. 2013;24(10):27252728. doi:10.1007/s00198-013-2375-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lotz JC, Cheal EJ, Hayes WC. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int. 1995;5:252261. doi:10.1007/BF01774015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech. 2011;26(1):2328. doi:10.1016/j.clinbiomech.2010.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA. 1994;271(2):128133. PubMed ID: 8264067 doi:10.1001/jama.1994.03510260060029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bergmann G, Graichen F, Siraky J, Jendrzynski H, Rohlmann A. Multichannel strain gauge telemetry for orthopaedic implants. J Biomech. 1988;21:169176. PubMed ID: 3350830 doi:10.1016/0021-9290(88)90009-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bergmann G, Graichen F, Rohlmann A. Hip joint forces during walking and running, measured in two patients. J Biomech. 1993;26:969990. PubMed ID: 8349721 doi:10.1016/0021-9290(93)90058-M

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bergmann G, Graichen F, Rohlmann A. Is staircase walking a risk for the fixation of hip implants? J Biomech. 1995;28:535553. doi:10.1016/0021-9290(94)00105-D

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bergmann G, Kniggendorf H, Graichen F, Rohlmann A. Influence of shoes and heel strike on the loading of the hip joint. J Biomech. 1995;28:817827. doi:10.1016/0021-9290(94)00129-R

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859871. PubMed ID: 11410170 doi:10.1016/S0021-9290(01)00040-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Novak AC, Brouwer B. Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults. Gait Posture. 2011;33(1):5460. PubMed ID: 21036615 doi:10.1016/j.gaitpost.2010.09.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Protopapadaki A, Drechsler IW, Cramp CM, Fiona J, Coutts JF, Scott MO. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin Biomech. 2007;22:203210. doi:10.1016/j.clinbiomech.2006.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L. Influence of muscle forces on femoral strain distribution. J Biomech. 1998;31(9):841846. PubMed ID: 9802785 doi:10.1016/S0021-9290(98)00080-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Anderson DE, Madigan ML. Effects of age-related differences in femoral loading and bone mineral density on strains in the proximal femur during controlled walking. J Appl Biomech. 2013;29:505516. PubMed ID: 23185080 doi:10.1123/jab.29.5.505

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Winter DA, Sidwall HG, Hobson DA. Measurement and reduction of noise in kinematics and locomotion. J Biomech. 1974;7(2):157159. doi:10.1016/0021-9290(74)90056-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Yu B, Gabriel D, Noble L, An K-N. Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J Appl Biomech. 1999;15(3):318329. doi:10.1123/jab.15.3.318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Vaughan C, Davis B, O’Connor J. Dynamics of Human Gait. 2nd ed. Cape Town, South Africa: Kiboho Publishers; 1992.

  • 20.

    Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269279. PubMed ID: 19957039 doi:10.1007/s10439-009-9852-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Glitsch U, Baumann W. The three-dimensional determination of internal loads in the lower extremity. J Biomech. 1997;30:11231131. PubMed ID: 9456380 doi:10.1016/S0021-9290(97)00089-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW. Structural trends in the aging femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual-energy x-ray absorptiometry data. J Bone Miner Res. 2000;15:22972304. PubMed ID: 11127194 doi:10.1359/jbmr.2000.15.12.2297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bell KL, Loveridge N, Power J, et al. Structure of femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res. 1999;14(1):111119. PubMed ID: 9893072 doi:10.1359/jbmr.1999.14.1.111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Derrick TR, Edward BW, Fellin RE, Seay JF. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion. J Biomech. 2016;49:429435. PubMed ID: 26803338 doi:10.1016/j.jbiomech.2016.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hall M, Stevermer CA, Gillette JC. Muscle activity amplitudes and co-contraction during stair ambulation following anterior cruciate ligament reconstruction. J Electromyogr Kinesiol. 2015;25:298304. doi:10.1016/j.jelekin.2015.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Delp SL, Maloney W. Effects of hip center location on the moment-generating capacity of the muscles. J Biomech. 1993;26:485499. PubMed ID: 8478351 doi:10.1016/0021-9290(93)90011-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2470 351 111
Full Text Views 78 30 0
PDF Downloads 50 15 0