A Comparison of Bilateral and Unilateral Drop Jumping Tasks in the Assessment of Vertical Stiffness

in Journal of Applied Biomechanics

Click name to view affiliation

Sean J. MaloneyUniversity of Bedfordshire

Search for other papers by Sean J. Maloney in
Current site
Google Scholar
PubMed
Close
*
,
Joanna RichardsUniversity of Bedfordshire

Search for other papers by Joanna Richards in
Current site
Google Scholar
PubMed
Close
*
, and
Iain M. FletcherUniversity of Bedfordshire

Search for other papers by Iain M. Fletcher in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study sought to compare vertical stiffness during bilateral and unilateral drop jumping. Specifically, the intersession reliabilities and force-deformation profiles associated with each task were to be examined. On 3 occasions, following familiarization, 14 healthy males (age: 22 [2] y; height: 1.77 [0.08] m; and body mass: 73.5 [8.0] kg) performed 3 bilateral, left leg and right leg drop jumps. All jumps were performed from a drop height of 0.18 m on to a dual force plate system. Vertical stiffness was calculated as the ratio of peak ground reaction force (GRF) to the peak center of mass (COM) displacement. Unilateral drop jumping was associated with higher GRF and greater COM displacement (both Ps < .001), but vertical stiffness was not different between tasks when considering individual limbs (P = .98). A coefficient of variation of 14.6% was observed for bilateral vertical stiffness during bilateral drop jumping; values of 6.7% and 7.6% were observed for left and right limb vertical stiffness during unilateral drop jumping. These findings suggest that unilateral drop jumps may exhibit greater reliability than bilateral drop jumps while eliciting similar vertical stiffness. It is also apparent that higher GRFs during unilateral drop jumping are mitigated by increased COM displacement.

The authors are with the Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom.

Maloney (sean.maloney@beds.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Butler RJ, Crowell HP III, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511517. doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Pearson SJ, McMahon J. Lower limb mechanical properties: determining factors and implications for performance. Sports Med. 2012;42(11):929940. PubMed ID: 23009192 doi:10.1007/BF03262304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Joseph CW, Bradshaw EJ, Kemp J, Clark RA. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. J Appl Biomech. 2013;29(4):386394. PubMed ID: 22923423 doi:10.1123/jab.29.4.386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hobara H, Inoue K, Kobayashi Y, Ogata T. A comparison of computation methods for leg stiffness during hopping. J Appl Biomech. 2014;30(1):154159. PubMed ID: 24676522 doi:10.1123/jab.2012-0285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Padua DA, Arnold BL, Carcia CR, Granata KP. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Mot Behav. 2005;37(2):111126. doi:10.3200/JMBR.37.2.111-126

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Farley CT, Blickhan R, Saito J, Taylor CR. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. J Appl Physiol. 1991;71(6):21272132. PubMed ID: 1778902 doi:10.1152/jappl.1991.71.6.2127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cavagna GA, Saibene FP, Margaria R. Mechanical work in running. J Appl Physiol. 1964;19(2):249256. doi:10.1152/jappl.1964.19.2.249

  • 8.

    Kunimasa Y, Sano K, Oda T, et al. Specific muscle-tendon architecture in elite Kenyan distance runners. Scand J Med Sci Sports. 2014;24(4):269274. doi:10.1111/sms.12161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bobbert MF, Casius LJR. Is the effect of a countermovement on hump height due to active state development? Med Sci Sports Exerc. 2005;37(3):440446. doi:10.1249/01.MSS.0000155389.34538.97

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Young W, Farrow D. A review of agility: practical applications for strength and conditioning. Strength Cond J. 2006;28(5):2429.

  • 11.

    Marshall BM, Moran KA. Which drop jump technique is most effective at enhancing countermovement jump ability, “countermovement” drop jump or “bounce” drop jump? J Sports Sci. 2013;31(12):13681374. PubMed ID: 23631690 doi:10.1080/02640414.2013.789921

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Turner AN, Jeffreys I. The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond J. 2010;32(4):8799. doi:10.1519/SSC.0b013e3181e928f9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Flanagan EP, Harrison AJ. Muscle dynamics differences between legs in healthy adults. J Strength Cond Res. 2007;21(1):6772. doi:10.1519/00124278-200702000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Maloney SJ, Fletcher IM, Richards J. A comparison of methods to determine bilateral asymmetries in vertical leg stiffness. J Sports Sci. 2016;34(9):829835. PubMed ID: 26230224 doi:10.1080/02640414.2015.1075055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Newton RU, Dugan E. Application of strength diagnosis. Strength Cond J. 2002;24(5):5059. doi:10.1519/00126548-200210000-00014

  • 16.

    Flanagan EP, Ebben WP, Jensen RL. Reliability of the reactive strength index and time to stabilization during depth jumps. J Strength Cond Res. 2008;22(5):16771682. doi:10.1519/JSC.0b013e318182034b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Arampatzis A, Schade F, Walsh M, Brüggemann GP. Influence of leg stiffness and its effect on myodynamic jumping performance. J Electromyogr Kinesiol. 2001;11(5):355364. doi:10.1016/S1050-6411(01)00009-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Arampatzis A, Brüggemann GP, Klapsing GM. Leg stiffness and mechanical energetic processes during jumping on a sprung surface. Med Sci Sports Exerc. 2001;33(6):923931. doi:10.1097/00005768-200106000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Feldmann CR, Weiss LW, Schilling BK, Whitehead PN. Association of drop vertical jump displacement with select performance variables. J Strength Cond Res. 2012;26(5):12151225. doi:10.1519/JSC.0b013e318242a311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Benjanuvatra N, Lay BS, Alderson JA, Blanksby BA. Comparison of ground reaction force asymmetry in one- and two-legged countermovement jumps. J Strength Cond Res. 2013;27(10):27002707. doi:10.1519/JSC.0b013e318280d28e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Simon AM, Ferris DP. Lower limb force production and bilateral force asymmetries are based on sense of effort. Exp Brain Res. 2008;187(1):129138. PubMed ID: 18251017 doi:10.1007/s00221-008-1288-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Maloney SJ, Richards J, Nixon DGD, Harvey LJ, Fletcher IM. Do stiffness and asymmetries predict change of direction performance? J Sports Sci. 2017;35(6):547556. PubMed ID: 27133586

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Maloney SJ, Richards J, Nixon DGD, Harvey LJ, Fletcher IM. Vertical stiffness asymmetries during drop jumping are related to ankle stiffness asymmetries. Scand J Med Sci Sports. 2017;27(6):661669. doi:10.1111/sms.12682

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Blazevich AJ. Position, velocity and acceleration. In: Blazevich AJ, ed. Sports Biomechanics: The Basics: Optimising Human Performance. London, UK: A & C Black Publishers Ltd; 2007.

    • Search Google Scholar
    • Export Citation
  • 25.

    Farley CT, Morgenroth DC. Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech. 1999;32(3):267273. PubMed ID: 10093026 doi:10.1016/S0021-9290(98)00170-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Farley CT, Glasheen J, McMahon TA. Running springs: speed and animal size. J Exp Biol. 1993;185:7186. PubMed ID: 8294853

  • 27.

    Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240.

  • 28.

    Hopkins WG. Precision of measurement. 2000. newstats.org/precision.html. Accessed January 10, 2014.

  • 29.

    Jarvis MM, Graham-Smith P, Comfort P. A methodological approach to quantifying plyometric intensity. J Strength Cond Res. 2016;30(9):25222532. doi:10.1519/JSC.0000000000000518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    McLachlan KA, Murphy AJ, Watsford ML, Rees S. The interday reliability of leg and ankle musculotendinous stiffness measures. J Appl Biomech. 2006;22(4):296304. doi:10.1123/jab.22.4.296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hobara H, Kimura K, Omuro K, et al. Determinants of difference in leg stiffness between endurance- and power-trained athletes. J Biomech. 2008;41(3):506514. doi:10.1016/j.jbiomech.2007.10.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hobara H, Kobayashi Y, Kato E, Ogata T. Differences in spring-mass characteristics between one- and two-legged hopping. J Appl Biomech. 2013;29(6):785789. PubMed ID: 23271206 doi:10.1123/jab.29.6.785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hobara H, Inoue K, Kanosue K. Effect of hopping frequency on bilateral differences in leg stiffness. J Appl Biomech. 2013;29(1):5560. PubMed ID: 23462443 doi:10.1123/jab.29.1.55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hobara H, Kobayashi Y, Yoshida E, Mochimaru M. Leg stiffness of older and younger individuals over a range of hopping frequencies. J Electromyogr Kinesiol. 2015;25(2):305309. doi:10.1016/j.jelekin.2015.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hobara H, Kimura K, Omuro K, et al. Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects. J Sci Med Sport. 2010;13(1):106111. PubMed ID: 18951842 doi:10.1016/j.jsams.2008.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Beattie K, Carson BP, Lyons M, Kenny IC. The relationship between maximal-strength and reactive-strength. Int J Sports Physiol Perform. 2017;12(4):548553. doi:10.1123/ijspp.2016-0216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Clark KP, Weyand PG. Are running speeds maximized with simple-spring stance mechanics? J Appl Physiol. 2014;117(6):604615. PubMed ID: 25080925 doi:10.1152/japplphysiol.00174.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2410 925 3
Full Text Views 93 9 2
PDF Downloads 65 10 0