Effects of Subsensory Noise and Fatigue on Knee Landing and Cross-over Cutting Biomechanics in Male Athletes

in Journal of Applied Biomechanics
View More View Less
  • 1 Shenzhen University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

The objective of this study was to examine the effects of subsensory noise and fatigue on knee biomechanics during the athletic task of landing followed by cross-over cutting. A total of 32 healthy male athletes participated in the study. They were evenly divided into 2 groups: no fatigue group and fatigue group. Fatigue was induced to the lower extremity by a repetitive squatting exercise in the fatigue group. Subsensory noise was generated by linear miniature vibrators bilaterally placed around the knee joints. During data collection, the participants were instructed to perform landing followed by cross-over cutting in both the subsensory on and off conditions. Dependent variables were selected to assess knee biomechanics in the phases of landing and cross-over cutting, separately. Results showed that fatigue resulted in larger knee flexion during landing and larger knee internal rotation during cross-over cutting. Subsensory noise was found to reduce knee rotation impulse during cross-over cutting. These findings suggest that cross-over cutting is more dangerous than landing in the fatigue condition, and subsensory noise may lead to changes in knee biomechanics consistent with reduced risk of anterior cruciate ligament injuries, but the changes may be task-specific.

The authors are with the Institute of Human Factors and Ergonomics, Shenzhen University, Shenzhen, China.

Hu (huxinyao@szu.edu.cn) is corresponding author.
  • 1.

    Rishiraj N, Taunton JE, Lloyd-Smith R, Woollard R, Regan W, Clement DB. The potential role of prophylactic/functional knee bracing in preventing knee ligament injury. Sports Med. 2009;39(11):937960. PubMed doi:10.2165/11317790-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Agel J, Evans TA, Dick R, Putukian M, Marshall SW. Descriptive epidemiology of collegiate men’s soccer injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 thorough 2002–2003. J Athl Train. 2007;42(2):270277. PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Takahashi S, Okuwaki T. Epidemiological survey of anterior cruciate ligament injury in Japanese junior high school and high school athletes: cross-sectional study. Res Sports Med. 2017;25(3):266276. PubMed doi:10.1080/15438627.2017.1314290

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Reeves J, Hume PA, Gianotti S, Wilson B, Ikeda E. A retrospective review from 2006 to 2011 of lower extremity injuries in badminton in New Zealand. Sports. 2015;3(2):7786. doi:10.3390/sports3020077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Cochrane JL, Lloyd DG, Buttfield A, Seward H, McGivern J. Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport. 2007;10(2):96104. PubMed doi:10.1016/j.jsams.2006.05.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wilk KE, Arrigo CA. Rehabilitation principles of the anterior cruciate ligament reconstructed knee: twelve steps for successful progression and return to play. Clin Sports Med. 2017;36(1):189232. PubMed doi:10.1016/j.csm.2016.08.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Acevedo RJ, Rivera-Vega A, Miranda G, Micheo W. Anterior cruciate ligament injury: identification of risk factors and prevention strategies. Curr Sport Med Rep. 2014;13(3):186191. doi:10.1249/JSR.0000000000000053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hanzlikova I, Richards J, Tomsa M, et al. The effect of proprioceptive knee bracing on knee stability during three different sport related movement tasks in healthy subjects and the implications to the management of anterior cruciate ligament (ACL) injuries. Gait Posture. 2016;48:165170. PubMed doi:10.1016/j.gaitpost.2016.05.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Giotis D, Tsiaras V, Ristanis S, et al. Knee braces can decrease tibial rotation during pivoting that occurs in high demanding activities. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):13471354. PubMed doi:10.1007/s00167-011-1454-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Alentorn-Geli E, Myer GD, Silvers HJ, et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):705729. PubMed doi:10.1007/s00167-009-0813-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wiesenfeld K, Moss F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature. 1995;337:3336. doi:10.1038/373033a0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Priplata A, Niemi J, Harry J, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. Lancet. 2003;362(9390):11231124. PubMed doi:10.1016/S0140-6736(03)14470-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Toledo DR, Barela JA., Kohn AF. Improved proprioceptive function by application of subsensory electrical noise: effects of aging and task-demand. Neuroscience. 2017;358:103114. PubMed doi:10.1016/j.neuroscience.2017.06.045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Webster CA, Nussbaum MA, Madigan ML. Stiffness and proprioceptive contributions of ankle braces and the influence of localized muscle fatigue. J Electromyogr Kinesiol. 2017;34:3743. PubMed doi:10.1016/j.jelekin.2017.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gabbett T. Incidence of injury in amateur rugby league sevens. Br J Sports Med. 2002;36(1):2326. PubMed doi:10.1136/bjsm.36.1.23

  • 16.

    Hawkins R, Hulse M, Wilkinson C, Hodson A, Gibson M. The association football medical research programme: an audits of injuries in professional foot. Br J Sports Med. 2001;35(1):4347. PubMed doi:10.1136/bjsm.35.1.43

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Roldan E, Reeves ND, Copper G, Andrews K. In vivo mechanical behaviour of the anterior cruciate ligament: a study of six daily and high impact activities. Gait Posture. 2017;58:201207. PubMed doi:10.1016/j.gaitpost.2017.07.123

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Houck J, Yack HJ. Association of knee angles, moments and function among subjects that are healthy and anterior cruciate ligament deficient (ACLD) during straight ahead and crossover cutting activities. Gait Posture. 2003;18(1):126138. PubMed doi:10.1016/S0966-6362(02)00188-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Madigan ML, Pidcoe PE. Changes in landing biomechanics during a fatiguing landing activity. J Electromyogr Kinesiol. 2003;13(5):491498. PubMed doi:10.1016/S1050-6411(03)00037-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ratel S, Duche P, Williams CA. Muscle fatigue during high-intensity exercise in children. Sports Med. 2006;36(12):10311065. PubMed doi:10.2165/00007256-200636120-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pappas E, Sheikhzadeh A, Hagins M, Nordin M. The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values. J Sport Sci Med. 2007;6(1):7784.

    • Search Google Scholar
    • Export Citation
  • 22.

    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Steadman JR. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech. 2003;18(7):662669. doi:10.1016/S0268-0033(03)00090-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    McGill R, Tukey JW, Larsen WA. Variations of box plots. Am Stat. 1978;32(1):1216.

  • 24.

    Kernozek TW, Torry MR, Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med. 2008;36(3):554565. PubMed doi:10.1177/0363546507308934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    O’Connor KM, Johnson C, Benson LC. The effect of isolated hamstrings fatigue on landing and cutting mechanics. J Appl Biomech. 2015;31(4):221228. doi:10.1123/jab.2013-0307

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930935. PubMed doi:10.1002/jor.1100130618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Khalid AJ, Harris SI, Michael L, Joseph H, Qu X. Effects of neuromuscular fatigue on perceptual-cognitive skills between genders in the contribution to the knee joint loading during side-stepping tasks. J Sports Sci. 2015;33(13):13221331. PubMed doi:10.1080/02640414.2014.990485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lucci S, Cortes N, van Lunen B, Ringleb S, Onate J. Knee and hip sagittal and transverse plane changes after two fatigue protocols. J Sci Med Sport. 2011;14(5):453459. PubMed doi:10.1016/j.jsams.2011.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cortes N, Greska E, Ambegaonkar JP, Kollock RO, Caswell SV, Onate JA. Knee kinematics is altered post-fatigue while performing a crossover task. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):22022208. PubMed doi:10.1007/s00167-013-2673-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Qu X. Low-level noise affects balance control differently when applied at different body parts. J Biomech. 2011;43(15):29362940. doi:10.1016/j.jbiomech.2010.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1221 509 24
Full Text Views 37 15 1
PDF Downloads 20 13 1