Lower Leg Morphology and Stretch-Shortening Cycle Performance of Dancers

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Greater levels of bone ultimate fracture load, bone stress–strain index, muscle cross-sectional area, and maximal voluntary isometric plantarflexion (MVIP) strength of the lower leg may be adaptations from chronic exposure to stretch-shortening cycle (SSC) actions. Dancers, a population that habitually performs SSC movements primarily about the ankle joint, may serve as a novel population to gain broader understanding of SSC function. A total of 10 female collegiate dancers and 10 untrained controls underwent peripheral quantitative computed tomography scans of both lower legs and performed MVIPs, countermovement hops, and drop hops at 20, 30, and 40 cm on a custom-made inclined sled. Dancers had greater right and left ultimate fracture load values and significantly (P ≤ .05) greater left leg stress–strain index than controls. Dancers had significantly larger right and left muscle cross-sectional area and MVIP values and hopped significantly higher during all hopping conditions in comparison with controls. Average force–time and power–time curves revealed significantly greater relative force and power measurements during the concentric phase for all hopping conditions in dancers when compared with controls. This investigation provides evidence that dance may be a stimulus for positive muscle and bone adaptations, strength levels, and enhanced SSC capabilities.

Rice, van Werkhoven, and McBride are with the Neuromuscular & Biomechanics Laboratory, Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA. Merritt is with Kinesiology Department, Southwestern University, Georgetown, TX, USA.

Rice (PaigeRice90@gmail.com) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Ravn SVoigt MSimonsen EBAlkjaer TBojsen-Moller FKlausen K. Choice of jumping strategy in two standard jumps, squat and countermovement jump—effect of training background or inherited preference? Scand J Med Sci Sports. 1999;9(4):201208. PubMed ID: 10407927 doi:10.1111/j.1600-0838.1999.tb00234.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev. 1984;12:81121. PubMed ID: 6376140 doi:10.1249/00003677-198401000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rice PEvan Werkhoven HDejournette DJGurchiek RDMackall JWMcBride JM. A comparison of musculo-articular stiffness and maximal isometric plantar flexion and knee extension force in dancers and untrained individuals. J Dance Med Sci. 2017;21(4):144150. PubMed ID: 29166984 doi:10.12678/1089-313X.21.4.144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kyrolainen HKomi PV. The function of neuromuscular system in maximal stretch-shortening cycle exercises: comparison between power- and endurance-trained athletes. J Electromyogr Kinesiol. 1995;5(1):1525. PubMed ID: 20719633 doi:10.1016/S1050-6411(99)80002-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nikander RSievanen HUusi-Rasi KHeinonen AKannus P. Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone. 2006;39(4):886894. PubMed ID: 16731064 doi:10.1016/j.bone.2006.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kubo KMorimoto MKomuro Tet al. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc. 2007;39(10):18011810. PubMed ID: 17909408 doi:10.1249/mss.0b013e31813e630a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cormie PMcBride JMMcCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177186. PubMed ID: 19077740 doi:10.1519/JSC.0b013e3181889324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Shippen JMay B. A kinematic approach to calculating ground reaction forces in dance. J Dance Med Sci. 2012;16(1):3943. PubMed ID: 22390953

  • 9.

    Kulig KFietzer ALPopovich JM Jr. Ground reaction forces and knee mechanics in the weight acceptance phase of a dance leap take-off and landing. J Sports Sci. 2011;29(2):125131. PubMed ID: 21170801 doi:10.1080/02640414.2010.534807

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Zhao RZhao MZhang L. Efficiency of jumping exercise in improving bone mineral density among premenopausal women: a meta-analysis. Sports Med. 2014;44(10):13931402. PubMed ID: 24981245 doi:10.1007/s40279-014-0220-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Schipilow JDMacdonald HMLiphardt AMKan MBoyd SK. Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study. Bone. 2013;56(2):281289. PubMed ID: 23800515 doi:10.1016/j.bone.2013.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Janz KFLetuchy EMBurns TLFrancis SLLevy SM. Muscle power predicts adolescent bone strength: Iowa bone development study. Med Sci Sports Exerc. 2015;47(10):22012206. PubMed ID: 25751769 doi:10.1249/MSS.0000000000000648

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jakobsen MDSundstrup ERanders MBet al. The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Hum Mov Sci. 2012;31(4):970986. PubMed ID: 22397814 doi:10.1016/j.humov.2011.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stenroth LCronin NJPeltonen JKorhonen MTSipila SFinni T. Triceps surae muscle-tendon properties in older endurance- and sprint-trained athletes. J Appl Physiol. 2016;120(1):6369. PubMed ID: 26494445 doi:10.1152/japplphysiol.00511.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hakkinen KKallinen MIzquierdo Met al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998;84(4):13411349. doi:10.1152/jappl.1998.84.4.1341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Widrick JJStelzer JEShoepe TCGarner DP. Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):408416. PubMed ID: 12121854 doi:10.1152/ajpregu.00120.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hakkinen KKeskinen KL. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol. 1989;59(3):215220. PubMed ID: 2583165 doi:10.1007/BF02386190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Brown ACWells TJSchade MLSmith DLFehling PC. Effects of plyometric training versus traditional weight training on strength, power, and aesthetic jumping ability in female collegiate dancers. J Dance Med Sci. 2007;11(2):3844.

    • Search Google Scholar
    • Export Citation
  • 19.

    Wyon MASmith AKoutedakis Y. A comparison of strength and stretch interventions on active and passive ranges of movement in dancers: a randomized controlled trial. J Strength Cond Res. 2013;27(11):30533059. PubMed ID: 23439346 doi:10.1519/JSC.0b013e31828a4842

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Malisoux LFrancaux MNielens HTheisen D. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol. 2006;100(3):771779. PubMed ID: 16322375 doi:10.1152/japplphysiol.01027.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Arabatzi FKellis ESaez-Saez De Villarreal E. Vertical jump biomechanics after plyometric, weight lifting, and combined (weight lifting + plyometric) training. J Strength Cond Res. 2010;24(9):24402448. PubMed ID: 20706157 doi:10.1519/JSC.0b013e3181e274ab

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kirby TJMcBride JMHaines TLDayne AM. Relative net vertical impulse determines jumping performance. J Appl Biomech. 2011;27(3):207214. PubMed ID: 21844609 doi:10.1123/jab.27.3.207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rabita GCouturier ALambertz D. Influence of training background on the relationships between plantarflexor intrinsic stiffness and overall musculoskeletal stiffness during hopping. Eur J Appl Physiol. 2008;103(2):163171. PubMed ID: 18224334 doi:10.1007/s00421-008-0679-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dos Santos Delabary MKomeroski IGMonteiro EPCosta RRHaas AN. Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson’s disease: a systematic review with meta-analysis. Aging Clin Exp Res. 2017. PubMed ID: 28980176 doi:10.1007/s40520-017-0836-2

    • Search Google Scholar
    • Export Citation
  • 25.

    Baumgartner TAChung H. Confidence limits for intraclass reliability coefficients. Meas Phys Educ Exerc Sci. 2001;5(3):179188. doi:10.1207/S15327841MPEE0503_4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Rice PEGoodman CLCapps CRTriplett NTErickson TMMcBride JM. Force- and power-time curve comparison during jumping between strength-matched male and female basketball players. Eur J Sport Sci. 2017;17(3):286293. PubMed ID: 27691454 doi:10.1080/17461391.2016.1236840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cormie PMcBride JMMcCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103118. PubMed ID: 17603130 doi:10.1123/jab.23.2.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1(3):98101. doi:10.1111/1467-8721.ep10768783

  • 29.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988:2.

  • 30.

    Pataky TCRobinson MAVanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013;46(14):23942401. PubMed ID: 23948374 doi:10.1016/j.jbiomech.2013.07.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Koutedakis YJamurtas A. The dancer as a performing athlete: physiological considerations. Sports Med. 2004;34(10):651661. PubMed ID: 15335242 doi:10.2165/00007256-200434100-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Newton RUKraemer WJHakkinen K. Effects of ballistic training on preseason preparation of elite volleyball players. Med Sci Sports Exerc. 1999;31(2):323330. PubMed ID: 10063823 doi:10.1097/00005768-199902000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nunes JACrewther BTViveiros LDe Rose DAoki MS. Effects of resistance training periodization on performance and salivary immune-endocrine responses of elite female basketball players. J Sports Med Phys Fitness. 2011;51(4):676682. PubMed ID: 22212272

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Simpson KJPettit M. Jump distance of dance landings influencing internal joint forces: II. Shear forces. Med Sci Sports Exerc. 1997;29(7):928936. PubMed ID: 9243492 doi:10.1097/00005768-199707000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kulas ASSchmitz RJSchultz SJWatson MAPerrin DH. Energy absorption as a predictor of leg impedance in highly trained females. J Appl Biomech. 2006;22(3):177185. PubMed ID: 17215549 doi:10.1123/jab.22.3.177

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Liederbach MRichardson MRodriguez MCompagno JDilgen FRose D. Jump exposures in the dance training environment: a measure of ergonomic demand. J Athl Train. 2006;41(2):S85.

    • Search Google Scholar
    • Export Citation
  • 37.

    Wernbom MAugustsson JThomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225264. PubMed ID: 17326698 doi:10.2165/00007256-200737030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Herzog WPowers KJohnston KDuvall M. A new paradigm for muscle contraction. Front Physiol. 2015;6:174. PubMed ID: 26113821 doi:10.3389/fphys.2015.00174

  • 39.

    Herzog W. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol. 2014;116(11):14071417. doi:10.1152/japplphysiol.00069.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Linke WAKruger M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology. 2010;25(3):186198.

  • 41.

    Lange SXiang FYakovenko Aet al. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005;308(5728):15991603. PubMed ID: 15802564 doi:10.1126/science.1110463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Wyon MFelton LGalloway S. A comparison of two stretching modalities on lower-limb range of motion measurements in recreational dancers. J Strength Cond Res. 2009;23(7):21442148. PubMed ID: 19855344 doi:10.1519/JSC.0b013e3181b3e198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Aagaard PAndersen JLDyhre-Poulsen Pet al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2001;534(pt 2):613623. PubMed ID: 11454977 doi:10.1111/j.1469-7793.2001.t01-1-00613.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Russell JAMcEwan IMKoutedakis YWyon MA. Clinical anatomy and biomechanics of the ankle in dance. J Dance Med Sci. 2008;12(3):7582. PubMed ID: 19618582

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Harley YXGibson ASCHarley EHLambert MIVaughan CLNoakes TD. Quadriceps strength and jumping efficiency in dancers. J Dance Med Sci. 2002;6(3):8794.

    • Search Google Scholar
    • Export Citation
  • 46.

    Wilson GJNewton RUMurphy AJHumphries BJ. The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc. 1993;25(11):12791286. PubMed ID: 8289617 doi:10.1249/00005768-199311000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Kummel JBergmann JPrieske OKramer AGranacher UGruber M. Effects of conditioning hops on drop jump and sprint performance: a randomized crossover pilot study in elite athletes. BMC Sports Sci Med Rehabil. 2016;8:1. PubMed ID: 26835128 doi:10.1186/s13102-016-0027-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Wilson JMLoenneke JPJo EWilson GJZourdos MCKim JS. The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Cond Res. 2012;26(6):17241729. PubMed ID: 21912291 doi:10.1519/JSC.0b013e318234eb6f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    de Villarreal ESIzquierdo MGonzalez-Badillo JJ. Enhancing jump performance after combined vs. maximal power, heavy-resistance, and plyometric training alone. J Strength Cond Res. 2011;25(12):32743281. doi:10.1519/JSC.0b013e3182163085

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Amorim TWyon MMaia Jet al. Prevalence of low bone mineral density in female dancers. Sports Med. 2015;45(2):257268. PubMed ID: 25281333 doi:10.1007/s40279-014-0268-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Stojanovic ERistic VMcMaster DTMilanovic Z. Effect of plyometric training on vertical jump performance in female athletes: a systematic review and meta-analysis. Sports Med. 2017:47(5):975986. PubMed ID: 27704484 doi:10.1007/s40279-016-0634-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 89 89 41
Full Text Views 12 12 3
PDF Downloads 5 5 3
Altmetric Badge
PubMed
Google Scholar