Estimates of Achilles Tendon Moment Arm Length at Different Ankle Joint Angles: Effect of Passive Moment

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The length of a muscle’s moment arm can be estimated noninvasively using ultrasound and the tendon excursion method. The main assumption with the tendon excursion method is that the force acting on the tendon during passive rotation is constant. However, passive force changes through the range of motion, and thus moment arm is underestimated. The authors attempted to account for passive force on the measurement of Achilles tendon moment arm using the tendon excursion method in 8 male and female runners. Tendon excursion was measured using ultrasound while the ankle was passively rotated at 0.17 rad·s−1. Moment arm was calculated at 5° intervals as the ratio of tendon displacement to joint rotation from 70° to 115°. Passive moment (MP) was measured using a dynamometer. The displacement attributable to MP was calculated by monitoring tendon displacement during a ramp isometric maximum contraction. MP was 5.7 (2.1) N·m at 70° and decreased exponentially from 70° to 90°. This resulted in MP-corrected moment arms that were significantly larger than uncorrected moment arms at joint angles where MP was present. Furthermore, MP-corrected moment arms did not change with ankle angle, which was not the case for uncorrected moment arms.

Fletcher and MacIntosh are with Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada. Fletcher is also with W21C Research and Innovation Centre, O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.

Fletcher (jared.fletcher@ucalgary.ca) is corresponding author.
  • 1.

    Fukashiro S, Komi PV, Jarvinen M, Miyashita M. Comparison between the directly measured Achilles tendon force and the tendon force calculated from the ankle joint moment during vertical jumps. Clin Biomech. 1993;8(1):25–30. doi:10.1016/S0268-0033(05)80006-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    An KN, Takahashi K, Harrigan TP, Chao EY. Determination of muscle orientations and moment arms. J Biomech Eng. 1984;106(3):280–282. PubMed ID: 6492774 doi:10.1115/1.3138494

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172(4):249–255. PubMed ID: 11531646 doi:10.1046/j.1365-201x.2001.00867.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pandy MG. Moment arm of a muscle force. Exerc Sport Sci Rev. 1999;27:79–118. PubMed ID: 10791015 doi:10.1249/00003677-199900270-00006

  • 5.

    Maganaris CN, Baltzopoulos V, Sargeant AJ. In vivo measurement-based estimations of the human Achilles tendon moment arm. Eur J Appl Physiol. 2000;83(4–5):363–369. PubMed ID: 11192068 doi:10.1007/s004210000247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rugg SG, Gregor RJ, Mandelbaum BR, Chiu L. In vivo moment arm calculations at the ankle using magnetic resonance imaging (MRI). J Biomech. 1990;23(5):495–501. PubMed ID: 2373722 doi:10.1016/0021-9290(90)90305-M.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):453–460. PubMed ID: 2289503 doi:10.1007/BF00236067

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Buchanan TS, Lloyd DG, Manal K, Besier TF. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med Sci Sports Exerc. 2005;37(11):1911–1916. PubMed ID: 16286861 doi:10.1249/01.mss.0000176684.24008.6f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sheehan FT. The 3D in vivo Achilles’ tendon moment arm, quantified during active muscle control and compared across sexes. J Biomech. 2012;45(2):225–230. PubMed ID: 22138193 doi:10.1016/j.jbiomech.2011.11.001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Manal K, Cowder JD, Buchanan TS. A hybrid method for computing Achilles tendon moment arm using ultrasound and motion analysis. J Appl Biomech. 2010;26(2):224–228. PubMed ID: 20498494 doi:10.1123/jab.26.2.224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Scholz MN, Bobbert MF, van Soest AJ, Clark JR, van Heerden J. Running biomechanics: shorter heels, better economy. J Exp Biol. 2008;211(pt 20):3266–3271. doi:10.1242/jeb.018812

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ito M, Akima H, Fukunaga T. In vivo moment arm determination using B-mode ultrasonography. J Biomech. 2000;33(2):215–218. PubMed ID: 10653035 doi:10.1016/S0021-9290(99)00154-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Maganaris CN. In vivo measurement-based estimations of the moment arm in the human tibialis anterior muscle-tendon unit. J Biomech. 2000;33(3):375–379. PubMed ID: 10673122 doi:10.1016/S0021-9290(99)00188-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Klein P, Mattys S, Rooze M. Moment arm length variations of selected muscles acting on talocrural and subtalar joints during movement: an in vitro study. J Biomech. 1996;29(1):21–30. PubMed ID: 8839014 doi:10.1016/0021-9290(95)00025-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fath F, Blazevich AJ, Waugh CM, Miller SC, Korff T. Direct comparison of in vivo Achilles tendon moment arms obtained from ultrasound and MR scans. J Appl Physiol. 2010;109(6):1644–1652. PubMed ID: 20847130 doi:10.1152/japplphysiol.00656.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Maganaris CN. Imaging-based estimates of moment arm length in intact human muscle-tendons. Eur J Appl Physiol. 2004;91(2–3):130–139. PubMed ID: 15015001 doi:10.1007/s00421-003-1033-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Olszewski K, Dick TJM, Wakeling JM. Achilles tendon moment arms: the importance of measuring at constant tendon load when using the tendon excursion method. J Biomech. 2015;48(6):1206–1209. PubMed ID: 25700609 doi:10.1016/j.jbiomech.2015.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hoang PD, Herbert RD, Todd G, Gorman RB, Gandevia SC. Passive mechanical properties of human gastrocnemius muscle-tendon units, muscle fascicles and tendons in vivo. J Exp Biol. 2007;210(23):4159–4168. doi:10.1242/jeb.002204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fletcher JR, Esau SP, MacIntosh BR. Changes in tendon stiffness and running economy in highly trained distance runners. Eur J Appl Physiol. 2010;110(5):1037–1046. PubMed ID: 20683611 doi:10.1007/s00421-010-1582-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–160. PubMed ID: 10501650 doi:10.1177/096228029900800204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kubo K, Kanehisa H, Fukunaga T. Is passive stiffness in human muscles related to the elasticity of tendon structures? Eur J Appl Physiol. 2001;85(3–4):226–232. PubMed ID: 11718288 doi:10.1007/s004210100463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Nordez A, Fouré A, Dombroski EW, Mariot JP, Cornu C, McNair PJ. Improvements to Hoang et al.’s method for measuring passive length-tension properties of human gastrocnemius muscle in vivo. J Biomech. 2010;43(2):379–382. PubMed ID: 19782365 doi:10.1016/j.jbiomech.2009.07.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Edgerton VR. Specific tension of human plantar flexors and dorsiflexors. J Appl Physiol. 1996;80(1):158–165. doi:10.1152/jappl.1996.80.1.158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Maganaris CN, Baltzopoulos V, Sargeant AJ. Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: in vivo observations in man. J Physiol. 1998;510(3):977–985. doi:10.1111/j.1469-7793.1998.977bj.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fath F, Blazevich AJ, Waugh CM, Miller SC, Korff T. Interactive effects of joint angle, contraction state and method on estimates of Achilles tendon moment arms. J Appl Biomech. 2013;29(2):241–244. PubMed ID: 23645495 doi:10.1123/jab.29.2.241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Leardini A, O’Connor JJ, Catani F, Giannini S. A geometric model of the human ankle joint. J Biomech. 1999;32(6):585–591. PubMed ID: 10332622 doi:10.1016/S0021-9290(99)00022-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hashizume S, Iwanuma S, Akagi R, Kanehisa H, Kawakami Y, Yanai T. In vivo determination of the Achilles tendon moment arm in three-dimensions. J Biomech. 2012;45(2):409–413. PubMed ID: 22055426 doi:10.1016/j.jbiomech.2011.10.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cavanagh PR, Pollock ML, Landa J. A biomechanical comparison of elite and good distance runners. Ann N Y Acad Sci. 1977;301(1):328–345. doi:10.1111/j.1749-6632.1977.tb38211.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Giddings VL, Beaupre GS, Whalen RT, Carter DR. Calcaneal loading during walking and running. Med Sci Sports Exerc. 2000;32(3):627–634. PubMed ID: 10731005 doi:10.1097/00005768-200003000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Spoor CW, van Leeuwen JL, Meskers CGM, Titulaer AF, Huson A. Estimation of instantaneous moment arms of lower-leg muscles. J Biomech. 1990;23(12):1247–1259. PubMed ID: 2292604 doi:10.1016/0021-9290(90)90382-D

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Fletcher JR, Groves EM, Pfister TR, MacIntosh BR. Can muscle shortening alone, explain the energy cost of muscle contraction in vivo? Eur J Appl Physiol. 2013;113(9):2313–2322. PubMed ID: 23712215 doi:10.1007/s00421-013-2665-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 129 52
Full Text Views 14 14 5
PDF Downloads 10 10 5