Comparisons of Segment Coordination: An Investigation of Vector Coding

in Journal of Applied Biomechanics

Click name to view affiliation

Julia Freedman SilvernailUniversity of Nevada
University of Massachusetts

Search for other papers by Julia Freedman Silvernail in
Current site
Google Scholar
PubMed
Close
*
,
Richard E.A. van EmmerikUniversity of Massachusetts

Search for other papers by Richard E.A. van Emmerik in
Current site
Google Scholar
PubMed
Close
*
,
Katherine BoyerUniversity of Massachusetts

Search for other papers by Katherine Boyer in
Current site
Google Scholar
PubMed
Close
*
,
Michael A. BusaUniversity of Massachusetts

Search for other papers by Michael A. Busa in
Current site
Google Scholar
PubMed
Close
*
, and
Joseph HamillUniversity of Massachusetts

Search for other papers by Joseph Hamill in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The development of a methodology to assess movement coordination has provided gait researchers a tool to assess movement organization. A challenge in analyzing movement coordination using vector coding lies within the inherent circularity of data garnered from this technique. Therefore, the purpose of this investigation was to determine if accurate group comparisons can be made with varying techniques of vector coding analyses. Thigh–shank coordination was analyzed using a modified vector coding technique on data from 2 groups of runners. Movement coordination was compared between groups using 3 techniques: (1) linear average completed with compressed data (0°–180°) and noncompressed data (0°–360°), (2) coordination phase binning analysis; and (3) a circular statistics analysis. Circular statistics (inferential) analysis provided a rigorous comparison of average movement coordination between groups. In addition, the binning analysis provided a metric for detecting even small differences in the time spent with a particular coordination pattern between groups. However, the linear analysis provided erroneous group comparisons. Furthermore, with compressed data, linear analysis led to misclassification of coordination patterns. While data compression may be attractive as a means of simplifying statistical analysis of inherently circular data, recommendations are to use circular statistics and binning methods on noncompressed data.

Freedman Silvernail is with the Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV. Freedman Silvernail, van Emmerik, Boyer, Busa, and Hamill are with Biomechanics Laboratory, University of Massachusetts, Amherst, MA. Busa is also with the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA.

Freedman Silvernail (jfs@unlv.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Sparrow W, Donovan E, Van Emmerik R, Barry E. Using relative motion plots to measure changes in intra-limb and inter-limb coordination. J Mot Behav. 1987;19(1):115129. doi:10.1080/00222895.1987.10735403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Chang R, Van Emmerik R, Hamill J. Quantifying rearfoot–forefoot coordination in human walking. J Biomech. 2008;41(14):31013105. PubMed ID: 18778823 doi:10.1016/j.jbiomech.2008.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Seay JF, Van Emmerik RE, Hamill J. Low back pain status affects pelvis–trunk coordination and variability during walking and running. Clin Biomech. 2011;26(6):572578. doi:10.1016/j.clinbiomech.2010.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Needham R, Naemi R, Chockalingam N. Quantifying lumbar–pelvis coordination during gait using a modified vector coding technique. J Biomech. 2014;47(5):10201026. PubMed ID: 24485511 doi:10.1016/j.jbiomech.2013.12.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wilson C, Simpson SE, Van Emmerik REA,Hamill J. Coordination variability and skill development in expert triple jumpers. Sports Biomech. 2008;7(1):29. PubMed ID: 18341132 doi:10.1080/14763140701682983

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pollard CD, Heiderscheit BC, Van Emmerik REA, Hamill J. Gender differences in lower extremity coupling variability during an unanticipated cutting maneuver. J Appl Biomech. 2005;21(2):143152. PubMed ID: 16082015 doi:10.1123/jab.21.2.143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Seay JF, Van Emmerik REA, Hamill J. Influence of low back pain status on pelvis–trunk coordination during walking and running. Spine. 2011;36(16):10701079. PubMed ID: 21304421 doi:1010.1097/BRS.1070b1013e3182015f3182017c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Heiderscheit BC, Hamill J, Van Emmerik REA. Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. J Appl Biomech. 2002;18(2):110121. doi:10.1123/jab.18.2.110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Batschelet E. Circular Statistics in Biology. Vol 371. London, UK: Academic Press; 1981.

  • 10.

    Foch E, Milner CE. Frontal plane running biomechanics in female runners with previous iliotibial band syndrome. J Appl Biomech. 2014;30(1):5865. PubMed ID: 23677835 doi:10.1123/jab.2013-0051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ferber R, Davis IM, Williams DS III. Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. J Biomech. 2005;38(3):477483. PubMed ID: 15652545 doi:10.1016/j.jbiomech.2004.04.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pohl MB, Buckley JG. Changes in foot and shank coupling due to alterations in foot strike pattern during running. Clin Biomech. 2008;23(3):334341. doi:10.1016/j.clinbiomech.2007.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Pohl MB, Messenger N, Buckley JG. Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait. Gait Posture. 2007;25(2):295302. PubMed ID: 16759862 doi:10.1016/j.gaitpost.2006.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dierks TA, Davis I. Discrete and continuous joint coupling relationships in uninjured recreational runners. Clin Biomech. 2007;22(5):581591. doi:10.1016/j.clinbiomech.2007.01.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Silvernail JF, Boyer K, Rohr E, Brüggemann GP, Hamill J. Running mechanics and variability with aging. Med Sci Sports Exerc. 2015;47(10):21752180. doi:10.1249/MSS.0000000000000633

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Berens P. CircStat: a MATLAB toolbox for circular statistics. J Stat Softw. 2009;31(10):121. doi:10.18637/jss.v031.i10

  • 17.

    Needham RA, Naemi R, Chockalingam N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J Biomech. 2015;48(12):35063511. PubMed ID: 26303167 doi:10.1016/j.jbiomech.2015.07.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Van Emmerik R, Wagenaar R. Dynamics of movement coordination and tremor during gait in Parkinson’s disease. Hum Mov Sci. 1996;15(2):203235. doi:10.1016/0167-9457(95)00044-5

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2638 1051 22
Full Text Views 97 22 0
PDF Downloads 106 35 1