Effect of Trunk Segment Boundary Definitions on Frontal Plane Segment Inertial Calculations

in Journal of Applied Biomechanics

Click name to view affiliation

Zachary MerrillUniversity of Pittsburgh

Search for other papers by Zachary Merrill in
Current site
Google Scholar
PubMed
Close
*
,
Grace BovaUniversity of Pittsburgh

Search for other papers by Grace Bova in
Current site
Google Scholar
PubMed
Close
*
,
April ChambersUniversity of Pittsburgh

Search for other papers by April Chambers in
Current site
Google Scholar
PubMed
Close
*
, and
Rakié ChamUniversity of Pittsburgh

Search for other papers by Rakié Cham in
Current site
Google Scholar
PubMed
Close
*
Restricted access

When defining trunk body segment parameters, such as segment length, mass, center of mass location, and radius of gyration, it is necessary to understand and define consistent, anatomically relevant segment boundaries. In addition to the differences in reported trunk parameters due to different data collection and analysis methods (such as cadaver studies and imaging methods), many previous publications have also used differing definitions of the trunk segment. The objective of this study was to determine the effect of differences in trunk segment definitions and obesity on the calculated mass, center of mass, and radius of gyration using dual-energy X-ray absorptiometry anthropometry calculations. Twenty-three participants were recruited in normal weight and morbidly obese body mass index categories. A frontal plane dual-energy X-ray absorptiometry scan was taken of each participant, and 3 trunk segment delineations used by Chambers, de Leva, and Zatsiorsky were used to calculate the trunk parameters. The results showed statistically significant effects of segmentation definition and obesity on the trunk parameters calculated. Because of the potential impacts on static modeling and inverse dynamics calculations, it is important to determine which trunk segmentations are most appropriate for specific applications and to account for the impact of obesity within individuals.

The authors are with the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

Merrill (zfm1@pitt.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Chaffin DB, Andersson GBJ, Martin BJ. Occupational Biomechanics. 4th ed. Hoboken, NJ: Wiley-Interscience; 2006.

  • 2.

    Durkin JL, Dowling JJ. Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models. J Biomech Eng. 2003;125:515522. PubMed ID: 12968576 doi:10.1115/1.1590359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Fiatarone Singh MA. Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr. 2004;80:475482. PubMed ID: 15277173 doi:10.1093/ajcn/80.2.475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kuczmarski MF, Kuczmarski RJ, Najjar M. Descriptive anthropometric reference data for older Americans. J Am Diet Assoc. 2000;100:5966. PubMed ID: 10646006 doi:10.1016/S0002-8223(00)00021-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Matrangola SL, Madigan ML, Nussbaum MA, Ross R, Davy KP. Changes in body segment inertial parameters of obese individuals with weight loss. J Biomech. 2008;41:32783281. PubMed ID: 18930231 doi:10.1016/j.jbiomech.2008.08.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    de Looze FJ, Kingma I, Bussmann JB, Toussaint HM. Validation of a dynamic linked segment model to calculate joint moments in lifting. Clin Biomech. 1992;7:161169. doi:10.1016/0268-0033(92)90031-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    de Looze MP, Bussmann JB, Kingma I, Toussaint HM. Different methods to estimate total power and its components during lifting. J Biomech. 1992;25:10891095. PubMed ID: 1517270 doi:10.1016/0021-9290(92)90045-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Desjardins P, Plamondon A, Gagnon M. Sensitivity analysis of segment models to estimate the net reaction moments at the L5/S1 joint in lifting. Med Eng Phys. 1998;20:153158. PubMed ID: 9679235 doi:10.1016/S1350-4533(97)00036-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ganley KJ, Powers CM. Determination of lower extremity anthropometric parameters using dual energy X-ray absorptiometry: the influence on net joint moments during gait. Clin Biomech. 2004;19:5056. doi:10.1016/j.clinbiomech.2003.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kingma I, Toussaint HM, De Looze MP, Van Dieen JH. Segment inertial parameter evaluation in two anthropometric models by application of a dynamic linked segment model. J Biomech. 1996;29:693704. PubMed ID: 8707800 doi:10.1016/0021-9290(95)00086-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Plamondon A, Gagnon M, Desjardins P. Validation of two 3-D segment models to calculate the net reaction forces and moments at the L5/S1 joint in lifting. Clin Biomech. 1996;11:101110. doi:10.1016/0268-0033(95)00043-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Pearsall DJ, Costigan PA. The effect of segment parameter error on gait analysis results. Gait Posture. 1999;9:173183. PubMed ID: 10575078 doi:10.1016/S0966-6362(99)00011-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rao G, Amarantini D, Berton E, Favier D. Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J Biomech. 2006;39:15311536. PubMed ID: 15970198 doi:10.1016/j.jbiomech.2005.04.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. J Neurophys. 1998;80:12111221. doi:10.1152/jn.1998.80.3.1211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    de Leva P. Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech. 1996;29:12231230. PubMed ID: 8872282 doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Chambers AJ, Sukits AL, McCrory JL, Cham R. The effect of obesity and gender on body segment parameters in older adults. Clin Biomech. 2010;25:131136. doi:10.1016/j.clinbiomech.2009.10.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Zatsiorsky VM, Seluyanov VN, Chugunova LG. Methods of determining mass-inertial characteristics of human body segments. In: Chernyi GG, Regirer SA, eds. Contemporary Problems of Biomechanics. Boca Raton, FL: CRC Press; 1990:272291.

    • Search Google Scholar
    • Export Citation
  • 18.

    Chambers AJ, Sukits AL, McCrory JL, Cham R. Differences in geriatric anthropometric data between DXA-based subject specific estimates and non-age specific traditional regression models. J Appl Biomech. 2011;27(3):197206. PubMed ID: 21844608 doi:10.1123/jab.27.3.197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2238 888 7
Full Text Views 27 1 0
PDF Downloads 20 2 0