Design and Validation of an Instrumented Uneven Terrain Treadmill

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Studying human and animal locomotion on an uneven terrain can be beneficial to basic science and applied studies for clinical and robotic applications. Traditional biomechanical analysis of human locomotion has often been limited to laboratory environments with flat, smooth runways and treadmills. The authors modified a regular exercise treadmill by attaching wooden blocks to the treadmill belt to yield an uneven locomotion surface. To ensure that these treadmill modifications facilitated biomechanical measurements, the authors compared ground reaction force data collected while a subject ran on the modified instrumented treadmill with a smooth surface with data collected using a conventional instrumented treadmill. Comparisons showed only minor differences. These results suggest that adding an uneven surface to a modified treadmill is a viable option for studying human or animal locomotion on an uneven terrain. Other types of surfaces (eg, compliant blocks) could be affixed in a similar manner for studies on other types of locomotion surfaces.

Voloshina (now at Stanford University) and Ferris (now at the University of Florida) were with the School of Kinesiology, University of Michigan, Ann Arbor, MI, USA. Voloshina was also with the Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.

Voloshina (avolosh@stanford.edu) is corresponding author.
  • 1.

    Grimmer S, Ernst M, Günther M, Blickhan R. Running on uneven ground: leg adjustment to vertical steps and self-stability. J Exp Biol. 2008;211(18):2989–3000. doi:10.1242/jeb.014357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Daley MA, Biewener AA. Running over rough terrain reveals limb control for intrinsic stability. Proc Natl Acad Sci USA. 2006;103(42):15681–15686. PubMed doi:10.1073/pnas.0601473103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Marigold DS, Patla AE. Strategies for dynamic stability during locomotion on a slippery surface: effects of prior experience and knowledge. J Neurophysiol. 2002;88(1):339–353. PubMed doi:10.1152/jn.00691.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Patla AE. Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997;5(1):54–69. doi:10.1016/S0966-6362(96)01109-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gates DH, Dingwell JB, Scott SJ, Sinitski EH, Wilken JM. Gait characteristics of individuals with transtibial amputations walking on a destabilizing rock surface. Gait Posture. 2012;36(1):33–39. PubMed doi:10.1016/j.gaitpost.2011.12.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Richardson JK, Thies SB, DeMott TK, Ashton-Miller JA. Interventions improve gait regularity in patients with peripheral neuropathy while walking on an irregular surface under low light. J Am Geriatr Soc. 2004;52(4):510–515. PubMed doi:10.1111/j.1532-5415.2004.52155.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Menant JC, Perry SD, Steele JR, Menz HB, Munro BJ, Lord SR. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people. Arch Phys Med Rehabil. 2008;89(10):1970–1976. PubMed doi:10.1016/j.apmr.2008.02.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Andres RO, Holt KG, Kubo M. Impact of railroad ballast type on frontal plane ankle kinematics during walking. Appl Ergon. 2005;36(5):529–534. PubMed doi:10.1016/j.apergo.2005.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Davies S, Mackinnon S. The energetics of walking on sand and grass at various speeds. Ergonomics. 2006;49(7):651–660. PubMed doi:10.1080/00140130600558023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pandolf K, Haisman M, Goldman R. Metabolic energy expenditure and terrain coefficients for walking on snow. Ergonomics. 1976;19(6):683–690. PubMed doi:10.1080/00140137608931583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pinnington HC, Dawson B. The energy cost of running on grass compared to soft dry beach sand. J Sci Med Sport. 2001;4(4):416–430. PubMed doi:10.1016/S1440-2440(01)80051-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pinnington HC, Dawson B, Soule RG, Goldman RF. Terrain coefficients for energy cost prediction. J Sci Med Sport. 1972;32(5):706–708. PubMed doi:10.1152/jappl.1972.32.5.706

    • Search Google Scholar
    • Export Citation
  • 13.

    Daley MA, Biewener AA. Leg muscles that mediate stability: mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl. Philos T Roy Soc B. 2011;366(1570):1580–1591. doi:10.1098/rstb.2010.0338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Domingo A, Ferris DP. Effects of physical guidance on short-term learning of walking on a narrow beam. Gait Posture. 2009;30(4):464–468. PubMed doi:10.1016/j.gaitpost.2009.07.114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sponberg S, Full R. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. J Exp Biol. 2008;211(3):433–446. doi:10.1242/jeb.012385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Voloshina AS, Ferris DP. Biomechanics and energetics of running on uneven terrain. J Exp Biol. 2015;218(5):711–719. doi:10.1242/jeb.106518

  • 17.

    Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007;26(1):17–24. PubMed doi:10.1016/j.gaitpost.2006.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ferris DP, Liang K, Farley CT. Runners adjust leg stiffness for their first step on a new running surface. J Biomech. 1999;32(8):787–794. PubMed doi:10.1016/S0021-9290(99)00078-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ferris DP, Louie M, Farley CT. Running in the real world: adjusting leg stiffness for different surfaces. Proc Biol Sci. 1998;265(1400):989–994. PubMed doi:10.1098/rspb.1998.0388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):2438–2444. PubMed doi:10.1016/j.jbiomech.2005.07.021

All Time Past Year Past 30 Days
Abstract Views 117 118 21
Full Text Views 8 8 1
PDF Downloads 5 5 2