Discriminatory Ability of Lower-Extremity Peak Torque and Rate of Torque Development in the Identification of Older Women With Slow Gait Speed

in Journal of Applied Biomechanics
View More View Less
  • 1 São Paulo State University
  • 2 University of New Hampshire
  • 3 Marilia Medical School
  • 4 Federal University of Uberlandia
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The aim was to compare torque and rate of torque development of lower limb muscles between older women with functional and slow gait speeds to determine which muscle group is the best predictor of functional gait speed, and to establish strength thresholds needed for functional walking speed. Torque and rate of torque development of hip, knee, and ankle muscles were measured in older women who were divided in 2 groups according to gait speed: slow gait speed (<1.22 m·s−1) and functional gait speed (≥1.22 m·s−1). For each muscle group, 3 maximal isometric contractions were performed, and peak torque and rate of torque development were recorded. Older women with slow gait speed had lower peak torque than older women with functional gait speed for hip extension (28%), knee flexion (15%), knee extension (14%), and plantar flexion (16%) (all Ps < .05). Older women with slow gait speed had lower peak rate of torque development for hip flexion (29%), hip extension (37%), knee flexion (34%), knee extension (33%), and plantar flexion (19%) (all Ps < .05). Knee extension peak rate of torque development and hip extension peak torque were the better predictors of functional gait speed with thresholds of 2.96 N·m·s−1·kg−1 and 1.26 N·m·kg−1, respectively.

Morcelli, Marques, and Navega are with the Department of Physical Therapy and Occupational Therapy, São Paulo State University, São Paulo, Brazil. LaRoche is with the Department of Kinesiology, University of New Hampshire, Durham, NH, USA. Crozara is with Marilia Medical School, São Paulo, Brazil. Hallal is with the Department of Physical Therapy, Federal University of Uberlandia, Uberlandia, Brazil. Gonçalves is with the Department of Physical Education, São Paulo State University, São Paulo, Brazil.

Morcelli (morcellimh@gmail.com) is corresponding author.
  • 1.

    Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012;67:2840. PubMed ID: 21444359 doi:10.1093/gerona/glr010

  • 2.

    Tikkanen P, Nykänen I, Lönnroos E, Sipilä S, Sulkava R, Hartikainen S. Physical activity at age of 20–64 years and mobility and muscle strength in old age: a community-based study. J Gerontol A Biol Sci Med Sci. 2012;67:905910. PubMed ID: 22396477 doi:10.1093/gerona/gls005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55:221231. PubMed ID: 10811152 doi:10.1093/gerona/55.4.M221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Manini TM, Visser M, Won-Park S, et al. Knee extension strength cutpoints for maintaining mobility. J Am Geriatr Soc. 2007;55:451457. PubMed ID: 17341251 doi:10.1111/j.1532-5415.2007.01087.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rantanen T, Guralnik JM, Izmirlian G, et al. Association of muscle strength with maximum walking speed in disabled older women. Am J Phys Med Rehabil. 1998;77:299305. PubMed ID: 9715919 doi:10.1097/00002060-199807000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stenholm S, Rantanen T, Alanen E, Reunanen A, Sainio P, Koskinen S. Obesity history as a predictor of walking limitation at old age. Obesity. 2007;15:929938. doi:10.1038/oby.2007.583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bohannon RW, Williams AA. Normal walking speed: a descriptive meta-analysis. Physiotherapy. 2011;97:182189. PubMed ID: 21820535 doi:10.1016/j.physio.2010.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Alcock L, Vanicek N, O’Brien TD. Alterations in gait speed and age do not fully explain the changes in gait mechanics associated with healthy older women. Gait Posture. 2013;37:586592. PubMed ID: 23122897 doi:10.1016/j.gaitpost.2012.09.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mänty M, de Leon CF, Rantanen T, et al. Mobility-related fatigue, walking speed, and muscle strength in older people. J Gerontol A Biol Sci Med Sci. 2012;67:523529. doi:10.1093/gerona/glr183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hicks GE, Shardell M, Alley DE, et al. Absolute strength and loss of strength as predictors of mobility decline in older adults: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2012;67:6673. PubMed ID: 21546582 doi:10.1093/gerona/glr055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    LaRoche DP, Millet ED, Kralian RJ. Low strength is related to diminished ground reaction forces and walking performance in older women. Gait Posture. 2011;33:668672. PubMed ID: 21458271 doi:10.1016/j.gaitpost.2011.02.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Burnfield JM, Josephson KR, Powers CM, Rubenstein LZ. The influence of lower extremity joint torque on gait characteristics in elderly men. Arch Phys Med Rehabil. 2000;81:11531157. PubMed ID: 10987153 doi:10.1053/apmr.2000.7174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    LaRoche DP, Cook SB, Mackala K. Strength asymmetry increases gait asymmetry and variability in older women. Med Sci Sports Exerc. 2012;44:21722181. PubMed ID: 22617401 doi:10.1249/MSS.0b013e31825e1d31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ploutz-Snyder LL, Manini T, Ploutz-Snyder RJ, Wolf DA. Functionally relevant thresholds of quadriceps femoris strength. J Gerontol A Biol Sci Med Sci. 2002;57:B144B152. PubMed ID: 11909879 doi:10.1093/gerona/57.4.B144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hernandez ME, Goldberg A, Alexander NB. Decreased muscle strength relates to self-reported stooping, crouching, or kneeling difficulty in older adults. Phys Ther. 2010;90:6774. PubMed ID: 19942678 doi:10.2522/ptj.20090035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93:13181326. PubMed ID: 12235031 doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kline PW, Morgan KD, Johnson DL, Ireland ML, Noehren B. Impaired quadriceps rate of torque development and knee mechanics after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2015;43(10):25532558. PubMed ID: 26276828 doi:10.1177/0363546515595834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Winters JD, Christiansen CL, Stevens-Lapsley JE. Preliminary investigation of rate of torque development deficits following total knee arthroplasty. Knee. 2014;21(2):382386. PubMed ID: 24238649 doi:10.1016/j.knee.2013.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Winters JD, Rudolph KS. Quadriceps rate of force development affects gait and function in people with knee osteoarthritis. Eur J Appl Physiol. 2014;114(2):273284. PubMed ID: 24240535 doi:10.1007/s00421-013-2759-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Beijersbergen CM, Granacher U, Vandervoort AA, DeVita P, Hortobágyi T. The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Ageing Res Rev. 2013;12:618627. PubMed ID: 23501431 doi:10.1016/j.arr.2013.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Morcelli MH, LaRoche DP, Crozara LF, et al. Neuromuscular performance in the hip joint of elderly fallers and non-fallers. Aging Clin Exp Res. 2016;28:443450. PubMed ID: 26400861 doi:10.1007/s40520-015-0448-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Marques NR, LaRoche DP, Hallal CZ, et al. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers. Clin Biomech. 2013;28:330336. doi:10.1016/j.clinbiomech.2013.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Crozara LF, Morcelli MH, Marques NS, et al. Motor readiness and joint torque production in lower limbs of older women fallers and non-fallers. J Electromyogr Kinesiol. 2013;23:11311138. doi:10.1016/j.jelekin.2013.04.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Winter DA. Biomechanics and Motor Control of Human Movement. 2nd ed. Waterloo, CA: Wiley-Interscience Publication; 2007.

  • 25.

    LaRoche DP, Cremin KA, Greenleaf B, Croce RV. Rapid torque development in older female fallers and nonfallers: a comparison across lower-extremity muscles. J Electromyogr Kinesiol. 2010;20:482488. PubMed ID: 19782579 doi:10.1016/j.jelekin.2009.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kepple TM, Sommer HJ, Lohmann Siegel K, Stanhope SJ. A three-dimensional musculoskeletal database for the lower extremities. J Biomech. 1998;31(1):7780. PubMed ID: 9596541 doi:10.1016/S0021-9290(97)00107-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Neptune RR, Zajac FE, Kautz SA. Muscle force redistributes segmental power for body progression during walking. Gait Posture. 2004;19(2):194205. PubMed ID: 15013508 doi:10.1016/S0966-6362(03)00062-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and powers during gait. J Appl Physiol. 2000;88(5):18041811. PubMed ID: 10797145 doi:10.1152/jappl.2000.88.5.1804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pua YH, Wrigley TV, Collins M, Cowan SM, Bennell KL. Self-report and physical performance measures of physical function in hip osteoarthritis: relationship to isometric quadriceps torque development. Arthritis Rheum. 2009;61:201208. PubMed ID: 19177533 doi:10.1002/art.24277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513:295305. PubMed ID: 9782179 doi:10.1111/j.1469-7793.1998.295by.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Cress ME, Meyer M. Maximal voluntary and functional performance levels needed for independence in adults aged 65 to 97 years. Phys Ther. 2003;83:3748. PubMed ID: 12495411

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 186 134 14
Full Text Views 29 12 1
PDF Downloads 11 9 0