Kinetic and Electromyographic Subphase Characteristics With Relation to Countermovement Vertical Jump Performance

in Journal of Applied Biomechanics
View More View Less
  • 1 Texas Tech University
  • 2 The University of Memphis
  • 3 University of Nevada
  • 4 Texas Tech University Health Sciences Center
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study sought to identify kinetic and electromyographic subphase characteristics distinguishing good from poor jumpers during countermovement vertical jumps (CMVJs), as defined by the reactive strength index (RSI, CMVJ displacement divided by jump time; cutoff = 0.46 m·s−1). A total of 15 men (1.8 [0.6] m, 84.5 [8.5] kg, 24 [2] y) were stratified by RSI into good (n = 6; RSI = 0.57 [0.07] m·s−1) and poor (n = 9; RSI = 0.39 [0.06] m·s−1) performance groups. The following variables were compared between groups using independent t tests (α = .05) and Cohen’s d effect sizes (d ≥ 0.8, large): jump height, propulsive impulse, eccentric rate of force development, and jump time, unloading, eccentric, and concentric subphase times, and average electromyographic amplitudes of 8 lower extremity muscles. Compared with the poor RSI group, the good RSI group exhibited a greater, though not statistically different CMVJ displacement (d = 1.07, P = .06). In addition, the good RSI group exhibited a significantly greater propulsive impulse (P = .04, d = 1.27) and a significantly more rapid unloading subphase (P = .04, d = 1.08). No other significant or noteworthy differences were detected. Enhanced RSI appears related to a quicker unloading phase, allowing a greater portion of the total jumping phase to be utilized generating positive net force. Poor jumpers should aim to use unloading strategies that emphasize quickness to enhance RSI during CMVJ.

Harry is with the Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX. Paquette is with the School of Health Studies, The University of Memphis, Memphis, TN. Schilling, Barker, and Dufek are with the Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV. James is with the Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX.

Harry (john.harry@ttu.edu) is corresponding author.
  • 1.

    Barker LA, Harry JR, Mercer JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res. 2018;32(1):248254. PubMed ID: 28746248 doi:10.1519/JSC.0000000000002160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349357. PubMed ID: 15903374

  • 3.

    Loturco I, Pereira LA, Cal Abad CC, et al. Vertical and horizontal jump tests are strongly associated with competitive performance in 100-m dash events. J Strength Cond Res. 2015;29(7):19661971. PubMed ID: 25627643 doi:10.1519/JSC.0000000000000849

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Maulder P, Cronin J. Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Phys Ther Sport. 2005;6(2):7482. doi:10.1016/j.ptsp.2005.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Meylan C, McMaster T, Cronin J, Mohammad NI, Rogers C, Deklerk M. Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):11401147. PubMed ID: 19528866 doi:10.1519/JSC.0b013e318190f9c2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nuzzo JL, McBride JM, Cormie P, McCaulley GO. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J Strength Cond Res. 2008;22(3):699707. PubMed ID: 18438251 doi:10.1519/JSC.0b013e31816d5eda

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vanezis A, Lees A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics. 2005;48(11–14):15941603. PubMed ID: 16338725 doi:10.1080/00140130500101262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Aragón-Vargas LF, Gross MM. Kinesiological factors in vertical jump performance: differences among individuals. J Appl Biomech. 1997;13(1):2444. doi:10.1123/jab.13.1.24

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Anderson FC, Pandy MG. Storage and utilization of elastic strain energy during jumping. J Biomech. 1993;26(12):14131427. PubMed ID: 8308046 doi:10.1016/0021-9290(93)90092-S

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kirby TJ, McBride JM, Haines TL, Dayne AM. Relative net vertical impulse determines jumping performance. J Appl Biomech. 2011;27(3):207214. PubMed ID: 21844609 doi:10.1123/jab.27.3.207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Harry JR, Paquette MR, Caia J, Townsend RJ, Weiss LW, Schilling BK. Effects of footwear condition on maximal jumping performance. J Strength Cond Res. 2015;29(6):16571665. PubMed ID: 26010799 doi:10.1519/JSC.0000000000000813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kim S, Park S, Choi S. Countermovement strategy changes with vertical jump height to accommodate feasible force constraints. J Biomech. 2014;47(12):31623168. PubMed ID: 25001205 doi:10.1016/j.jbiomech.2014.06.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cormie P, McGuigan MR, Newton RU. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc. 2010;42(9):17311744. PubMed ID: 20142784 doi:10.1249/MSS.0b013e3181d392e8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bobbert MF, van Ingen Schenau GJ. Coordination in vertical jumping. J Biomech. 1988;21(3):249262. PubMed ID: 3379084 doi:10.1016/0021-9290(88)90175-3

  • 15.

    Harry JR, Barker LA, James CR, Dufek JS. Performance differences among skilled soccer players of different playing positions during vertical jumping and landing. J Strength Cond Res. 2018;32(2):304312. PubMed ID: 29369951doi:10.1519/JSC.0000000000002343

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lazaridis SN, Bassa EI, Patikas D, Hatzikotoulas K, Lazaridis FK, Kotzamanidis CM. Biomechanical comparison in different jumping tasks between untrained boys and men. Pediatr Exerc Sci. 2013;25(1):101113. PubMed ID: 23406698 doi:10.1123/pes.25.1.101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Barnes JL, Schilling BK, Falvo MJ, Weiss LW, Creasy AK, Fry AC. Relationship of jumping and agility performance in female volleyball athletes. J Strength Cond Res. 2007;21(4):11921196. PubMed ID: 18076276

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Flanagan EP, Ebben WP, Jensen RL. Reliability of the reactive strength index and time to stabilization during depth jumps. J Strength Cond Res. 2008;22(5):16771682. PubMed ID: 18714215 doi:10.1519/JSC.0b013e318182034b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Markwick WJ, Bird SP, Tufano JJ, Seitz LB, Haff GG. The intraday reliability of the reactive strength index calculated from a drop jump in professional men’s basketball. Int J Sports Physiol Perform. 2015;10(4):482488. PubMed ID: 25394213 doi:10.1123/ijspp.2014-0265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Suchomel TJ, Bailey CA, Sole CJ, Grazer JL, Beckham GK. Using reactive strength index-modified as an explosive performance measurement tool in Division I athletes. J Strength Cond Res. 2015;29(4):899904. PubMed ID: 25426515 doi:10.1519/JSC.0000000000000743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hermens HJ, Freriks B, Merletti R, et al. SENIAM 8. European Recommendations for Surface ElectroMyoGraphy. Enschede, The Netherlands: Roessingh Research and Development; 1999.

    • Search Google Scholar
    • Export Citation
  • 22.

    McAllister MJ, Hammond KG, Schilling BK, Ferreria LC, Reed JP, Weiss LW. Muscle activation during various hamstring exercises. J Strength Cond Res. 2013;28(6):15731580. doi:10.1519/JSC.0000000000000302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lees A, Vanrenterghem J, De Clercq D. Understanding how an arm swing enhances performance in the vertical jump. J Biomech. 2004;37(12):19291940. PubMed ID: 15519601 doi:10.1016/j.jbiomech.2004.02.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Harry JR, Barker LA, Mercer JA, Dufek JS. Vertical and horizontal impact force comparison during jump landings with and without rotation in NCAA Division I male soccer players. J Strength Cond Res. 2017;31(7):17801786. PubMed ID: 27669194 doi:10.1519/JSC.0000000000001650

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Meylan CM, Nosaka K, Green J, Cronin JB. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J Sports Sci. 2010;28(5):545554. PubMed ID: 20373198 doi:10.1080/02640411003628048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007;35(2):235241. PubMed ID: 17092926 doi:10.1177/0363546506294077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Robertson G, Caldwell G, Hamill J, Kamen G, Whittlesey S. Research Methods in Biomechanics. 2nd ed. Champaign, IL: Human Kinetics; 2013.

    • Search Google Scholar
    • Export Citation
  • 28.

    Dowling JJ, Vamos L. Identification of kinetic and temporal factors related to vertical jump performance. J Appl Biomech. 1993;9(2):95110. doi:10.1123/jab.9.2.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 30.

    Sullivan GM, Feinn R. Using effect size—or why the P value is not enough. J Grad Med Educ. 2012;4(3):279282. PubMed ID: 23997866 doi:10.4300/JGME-D-12-00156.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Barker LA, Harry JR, Dufek JS, Mercer JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res. 2017;31(4):932938. PubMed ID: 27398922 doi:10.1519/JSC.0000000000001557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dal Pupo J, Detanico D, Giovana DS. Kinetic parameters as determinants of vertical jump performance. Braz J Kinanthrop Hum Perform. 2012;14(1):4151.

    • Search Google Scholar
    • Export Citation
  • 33.

    Mizuguchi S. Net Impulse and Net Impulse Characteristics in Vertical Jumping. [dissertation]. Johnson City, TN: East Tennessee State University; 2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 274 249 9
Full Text Views 33 32 3
PDF Downloads 26 26 0