Runners With Patellofemoral Pain Exhibit Greater Peak Patella Cartilage Stress Compared With Pain-Free Runners

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The primary purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared with pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. A total of 22 female recreational runners (12 with PFP and 10 pain-free controls) participated in this study. Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during the stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower-extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared with the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs control: 21.2 [5.6] MPa vs 16.5 [4.6] MPa) and maximum shear stress (PFP vs control: 11.3 [4.6] MPa vs 8.7 [2.3] MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively), followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared with pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted the elevated peak stress during running.

Liao and Powers are with the Jacquelin Perry Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA. Liao is also with the Musculoskeletal Quantitative Imaging Research, Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA. Keyak is with the Departments of Radiological Sciences, Biomedical Engineering, and Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, USA.

Powers (powers@usc.edu) is corresponding author.
  • 1.

    van Mechelen W. Running injuries. A review of the epidemiological literature. Sports Med. 1992;14(5):320–335. doi:10.2165/00007256-199214050-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    van Gent RN, Siem D, van Middelkoop M, van Os AG, Bierma-Zeinstra SM, Koes BW. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med. 2007;41(8):469–480; discussion 480. PubMed ID: 17473005 doi:10.1136/bjsm.2006.033548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101. PubMed ID: 11916889 doi:10.1136/bjsm.36.2.95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Outerbridge RE, Dunlop JA. The problem of chondromalacia patellae. Clin Orthop Relat Res. 1975;110:177–196.

  • 5.

    Farrokhi S, Keyak JH, Powers CM. Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study. Osteoarthritis Cartilage. 2011;19(3):287–294. PubMed ID: 21172445 doi:10.1016/j.joca.2010.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ho KY, Keyak JH, Powers CM. Comparison of patella bone strain between females with and without patellofemoral pain: a finite element analysis study. J Biomech. 2014;47(1):230–236. PubMed ID: 24188973 doi:10.1016/j.jbiomech.2013.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Brechter JH, Powers CM. Patellofemoral joint stress during stair ascent and descent in persons with and without patellofemoral pain. Gait Posture. 2002;16(2):115–123. PubMed ID: 12297253 doi:10.1016/S0966-6362(02)00090-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wirtz AD, Willson JD, Kernozek TW, Hong DA. Patellofemoral joint stress during running in females with and without patellofemoral pain. Knee. 2012;19(5):703–708. PubMed ID: 22000909 doi:10.1016/j.knee.2011.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Besier TF, Pal S, Draper CE, et al. The role of cartilage stress in patellofemoral pain. Med Sci Sports Exerc. 2015;47(11):2416–2422. PubMed ID: 25899103 doi:10.1249/MSS.0000000000000685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Powers CM. Patellar kinematics, part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther. 2000;80(10):965–978. PubMed ID: 11002432

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ward SR, Terk MR, Powers CM. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am. 2007;89(8):1749–1755. PubMed ID: 17671014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639–646. PubMed ID: 14669959 doi:10.2519/jospt.2003.33.11.639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Noehren B, Pohl MB, Sanchez Z, Cunningham T, Lattermann C. Proximal and distal kinematics in female runners with patellofemoral pain. Clin Biomech. 2012;27(4):366–371. doi:10.1016/j.clinbiomech.2011.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):12–19. PubMed ID: 19131677 doi:10.2519/jospt.2009.2885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nakagawa TH, Moriya ET, Maciel CD, Serrao FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42(6):491–501. PubMed ID: 22402604 doi:10.2519/jospt.2012.3987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Besier TF, Draper CE, Gold GE, Beaupré GS, Delp SL. Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res. 2005;23(2):345–350. doi:10.1016/j.orthres.2004.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Powers CM, Lilley JC, Lee TQ. The effects of axial and multi-plane loading of the extensor mechanism on the patellofemoral joint. Clin Biomech. 1998;13(8):616–624. doi:10.1016/S0268-0033(98)00013-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Teng HL, Powers CM. Sagittal plane trunk posture influences patellofemoral joint stress during running. J Orthop Sports Phys Ther. 2014;44(10):785–792. PubMed ID: 25155651 doi:10.2519/jospt.2014.5249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Liao TC, Yang N, Ho KY, Farrokhi S, Powers CM. Femur rotation increases patella cartilage stress in females with patellofemoral pain. Med Sci Sports Exerc. 2015;47(9):1775–1780. PubMed ID: 25606814 doi:10.1249/MSS.0000000000000617

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Elias JJ, Kilambi S, Cosgarea AJ. Computational assessment of the influence of vastus medialis obliquus function on patellofemoral pressures: model evaluation. J Biomech. 2010;43(4):612–617. PubMed ID: 20060526 doi:10.1016/j.jbiomech.2009.10.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Besier TF, Gold GE, Beaupre GS, Delp SL. A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc. 2005;37(11):1924–1930. PubMed ID: 16286863 doi:10.1249/01.mss.0000176686.18683.64

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Chen YJ, Scher I, Powers CM. Quantification of patellofemoral joint reaction forces during functional activities using a subject-specific three-dimensional model. J Appl Biomech. 2010;26(4):415–423. PubMed ID: 21245501 doi:10.1123/jab.26.4.415

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mesfar W, Shirazi-Adl A. Biomechanics of the knee joint in flexion under various quadriceps forces. Knee. 2005;12(6):424–434. PubMed ID: 15939592 doi:10.1016/j.knee.2005.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hansen P, Bojsen-Moller J, Aagaard P, Kjaer M, Magnusson SP. Mechanical properties of the human patellar tendon, in vivo. Clin Biomech. 2006;21(1):54–58. doi:10.1016/j.clinbiomech.2005.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Carter DR, Beaupré GS. Linear elastic and poroelastic models of cartilage can produce comparable stress results: a comment on Tanck et al. (J Biomech 32:153-161, 1999). J Biomech. 1999;32(11):1255–1257. PubMed ID: 10541078 doi:10.1016/S0021-9290(99)00123-2

    • Search Google Scholar
    • Export Citation
  • 26.

    Carter DR, Beaupré GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ. The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res. 2004;(427)(suppl):69–77. PubMed ID: 15480079 doi:10.1097/01.blo.0000144970.05107.7e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Carter DR, Beaupré GS, eds. Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging, and Regeneration. Cambridge, MA: Cambridge University Press; 2001.

    • Search Google Scholar
    • Export Citation
  • 28.

    Rolke R, Andrews Campbell K, Magerl W, Treede RD. Deep pain thresholds in the distal limbs of healthy human subjects. Eur J Pain. 2005;9(1):39–48. PubMed ID: 15629873 doi:10.1016/j.ejpain.2004.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Powers CM, Ward SR, Chan LD, Chen YJ, Terk MR. The effect of bracing on patella alignment and patellofemoral joint contact area. Med Sci Sports Exerc. 2004;36(7):1226–1232. PubMed ID: 15235330 doi:10.1249/01.MSS.0000132376.50984.27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Brechter JH, Powers CM. Patellofemoral stress during walking in persons with and without patellofemoral pain. Med Sci Sports Exerc. 2002;34(10):1582–1593. doi:10.1097/00005768-200210000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Wilson NA, Press JM, Koh JL, Hendrix RW, Zhang LQ. In vivo noninvasive evaluation of abnormal patellar tracking during squatting in patients with patellofemoral pain. J Bone Joint Surg Am. 2009;91(3):558–566. PubMed ID: 19255215 doi:10.2106/JBJS.G.00572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Salsich GB, Perman WH. Patellofemoral joint contact area is influenced by tibiofemoral rotation alignment in individuals who have patellofemoral pain. J Orthop Sports Phys Ther. 2007;37(9):521–528. PubMed ID: 17939611 doi:10.2519/jospt.2007.37.9.521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lee TQ, Morris G, Csintalan RP. The influence of tibial and femoral rotation on patellofemoral contact area and pressure. J Orthop Sports Phys Ther. 2003;33(11):686–693. PubMed ID: 14669964 doi:10.2519/jospt.2003.33.11.686

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Prins MR, van der Wurff P. Females with patellofemoral pain syndrome have weak hip muscles: a systematic review. Aust J Physiother. 2009;55(1):9–15. PubMed ID: 19226237 doi:10.1016/S0004-9514(09)70055-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Csintalan RP, Schulz MM, Woo J, McMahon PJ, Lee TQ. Gender differences in patellofemoral joint biomechanics. Clin Orthop Relat Res. 2002;402:260–269. PubMed ID: 12218492

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Winslow J, Yoder E. Patellofemoral pain in female ballet dancers: correlation with iliotibial band tightness and tibial external rotation. J Orthop Sports Phys Ther. 1995;22(1):18–21. PubMed ID: 7550298 doi:10.2519/jospt.1995.22.1.18

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Boling MC, Padua DA, Marshall SW, Guskiewicz K, Pyne S, Beutler A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) cohort. Am J Sports Med. 2009;37(11):2108–2116. PubMed ID: 19797162 doi:10.1177/0363546509337934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989;7(6):849–860. PubMed ID: 2795325 doi:10.1002/jor.1100070611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Lu XL, Mow VC. Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc. 2008;40(2):193–199. PubMed ID: 18202585 doi:10.1249/mss.0b013e31815cb1fc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther. 2003;33(11):677–685. PubMed ID: 14669963 doi:10.2519/jospt.2003.33.11.677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Cifuentes AO, Kalbag A. A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem Anal Des. 1992;12(3–4):313–318. doi:10.1016/0168-874X(92)90040-J

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 175 175 12
Full Text Views 16 16 0
PDF Downloads 8 8 0