Individuals With Knee Osteoarthritis Demonstrate Interlimb Asymmetry in Pedaling Power During Stationary Cycling

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Cycling is commonly prescribed for physical rehabilitation of individuals with knee osteoarthritis (OA). Despite the known therapeutic benefits, no research has examined interlimb symmetry of power output during cycling in these individuals. We investigated the effects of external workload and cadence on interlimb symmetry of crank power output in individuals with knee OA versus healthy controls. A total of 12 older participants with knee OA and 12 healthy sex- and age-matched controls were recruited. Participants performed 2-minute bouts of stationary cycling at 4 workload-cadence conditions (75 W at 60 rpm, 75 W at 90 rpm, 100 W at 60 rpm, and 100 W at 90 rpm). Power output contribution of each limb toward total crank power output was computed over 60 crank cycles from the effective component of pedal force, which was perpendicular to the crank arm. Across the workload-cadence conditions, the knee OA group generated significantly higher power output with the severely affected leg compared with the less affected leg (10% difference; P = .02). Healthy controls did not show interlimb asymmetry in power output (0.1% difference; P > .99). For both groups, interlimb asymmetry was unaffected by external workload and cadence. Our results indicate that individuals with knee OA demonstrate interlimb asymmetry in crank power output during stationary cycling.

The authors are with the Department of Health and Human Development, Western Washington University, Bellingham, WA, USA.

Buddhadev (harsh.buddhadev@wwu.edu) is the corresponding author.
  • 1.

    Jordan JM, Helmick CG, Renner JB, et al. Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project. J Rheumatol. 2007;34(1):172–180. PubMed ID: 17216685

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hortobagyi T, Garry J, Holbert D, Devita P. Aberrations in the control of quadriceps muscle force in patients with knee osteoarthritis. Arthritis Rheum. 2004;51(4):562–569. PubMed ID: 15334428 doi:10.1002/art.20545

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bayramoglu M, Toprak R, Sozay S. Effects of osteoarthritis and fatigue on proprioception of the knee joint. Arch Phys Med Rehabil. 2007;88(3):346–350. PubMed ID: 17321828 doi:10.1016/j.apmr.2006.12.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Felson DT. The epidemiology of knee osteoarthritis: results from the framingham osteoarthritis study. Semin Arthritis Rheum. 1990;20(3):42–50. doi:10.1016/0049-0172(90)90046-I

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–646. PubMed ID: 11033593 doi:10.7326/0003-4819-133-8-200010170-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hurley MV, Scott DL, Rees J, Newham DJ. Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann Rheum Dis. 1997;56(11):641–648. PubMed ID: 9462165 doi:10.1136/ard.56.11.641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sharma L, Pai YC, Holtkamp K, Rymer WZ. Is knee joint proprioception worse in the arthritic knee versus the unaffected knee in unilateral knee osteoarthritis? Arthritis Rheum. 1997;40(8):1518–1525. PubMed ID: 9259434 doi:10.1002/art.1780400821

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mangione KK, McCully K, Gloviak A, Lefebvre I, Hofmann M, Craik R. The effects of high-intensity and low-intensity cycle ergometry in older adults with knee osteoarthritis. J Gerontol A Biol Sci Med Sci. 1999;54(4):184–190. PubMed ID: 10219009 doi:10.1093/gerona/54.4.M184

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Salacinski AJ, Krohn K, Lewis SF, Holland ML, Ireland K, Marchetti G. The effects of group cycling on gait and pain-related disability in individuals with mild-to-moderate knee osteoarthritis: a randomized controlled trial. J Orthop Sports Phys Ther. 2012;42(12):985–995. PubMed ID: 22951360 doi:10.2519/jospt.2012.3813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Millar AL. Action Plan for Arthritis. Champaign, IL: Human Kinetics; 2003.

  • 11.

    Hunt MA, Sanderson DJ, Moffet H, Inglis JT. Interlimb asymmetry in persons with and without an anterior cruciate ligament deficiency during stationary cycling. Arch Phys Med Rehabil. 2004;85(9):1475–1478. PubMed ID: 15375819 doi:10.1016/j.apmr.2003.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Elmer SJ, Barratt PR, Korff T, Martin JC. Joint-specific power production during submaximal and maximal cycling. Med Sci Sports Exerc. 2011;43(10):1940–1947. PubMed ID: 21448081 doi:10.1249/MSS.0b013e31821b00c5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marsh AP, Martin PE. The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Med Sci Sports Exerc. 1995;27(2):217–225. PubMed ID: 7723645 doi:10.1249/00005768-199502000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    MacIntosh BR, Neptune RR, Horton JF. Cadence, power, and muscle activation in cycle ergometry. Med Sci Sports Exerc. 2000;32(7):1281–1287. PubMed ID: 10912894 doi:10.1097/00005768-200007000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Baum BS, Li L. Lower extremity muscle activities during cycling are influenced by load and frequency. J Electromyogr Kinesiol. 2003;13(2):181–190. PubMed ID: 12586523 doi:10.1016/S1050-6411(02)00110-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gardner JK, Zhang S, Liu H, et al. Effects of toe-in angles on knee biomechanics in cycling of patients with medial knee osteoarthritis. Clin Biomech. 2015;30(3):276–282. doi:10.1016/j.clinbiomech.2015.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Nordeen-Snyder KS. The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Med Sci Sports. 1977;9(2):113–117. PubMed ID: 895427

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sanderson DJ, Amoroso AT. The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. J Electromyogr Kinesiol. 2009;19(6):e465–e471. PubMed ID: 19042140 doi:10.1016/j.jelekin.2008.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Silberman MR, Webner D, Collina S, Shiple BJ. Road bicycle fit. Clin J Sport Med. 2005;15(4):271–276. PubMed ID: 16003043 doi:10.1097/01.jsm.0000171255.70156.da

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ericson MO, Bratt A, Nisell R, Arborelius UP, Ekholm J. Power output and work in different muscle groups during ergometer cycling. Eur J Appl Physiol. 1986;55(3):229–235. doi:10.1007/BF02343792

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Korff T, Newstead AH, van Zandwijk R, Jensen JL. Age- and activity-related differences in the mechanisms underlying maximal power production in young and older adults. J Appl Biomech. 2014;30(1):12–20. PubMed ID: 23549340 doi:10.1123/jab.2013-0037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Gardner JK, Klipple G, Stewart C, Asif I, Zhang S. Acute effects of lateral shoe wedges on joint biomechanics of patients with medial compartment knee osteoarthritis during stationary cycling. J Biomech. 2016;49(13):2817–2823. PubMed ID: 27451059 doi:10.1016/j.jbiomech.2016.06.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Marsh AP, Martin PE, Sanderson DJ. Is a joint moment-based cost function associated with preferred cycling cadence? J Biomech. 2000;33(2):173–180. PubMed ID: 10653030 doi:10.1016/S0021-9290(99)00155-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Davis RR, Hull ML. Measurement of pedal loading in bicycling: II. Analysis and results. J Biomech. 1981;14(12):857–872. PubMed ID: 7328092 doi:10.1016/0021-9290(81)90013-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Dorel S, Couturier A, Lacour JR, Vandewalle H, Hautier C, Hug F. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Med Sci Sports Exerc. 2010;42(6):1174–1183. PubMed ID: 19997017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Carpes FP, Rossato M, Faria IE, Bolli Mota C. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial. J Sports Med Phys Fitness. 2007;47(1):51–57. PubMed ID: 17369798

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Carpes FP, Mota CB, Faria IE. On the bilateral asymmetry during running and cycling—a review considering leg preference. Phys Ther Sport. 2010;11(4):136–142. PubMed ID: 21055708 doi:10.1016/j.ptsp.2010.06.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Smak W, Neptune RR, Hull ML. The influence of pedaling rate on bilateral asymmetry in cycling. J Biomech. 1999;32(9):899–906. PubMed ID: 10460126 doi:10.1016/S0021-9290(99)00090-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 30.

    Phan CM, Link TM, Blumenkrantz G, et al. MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol. 2006;16(3):608–618. PubMed ID: 16222533 doi:10.1007/s00330-005-0004-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Raynauld JP, Martel-Pelletier J, Berthiaume MJ, et al. Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum. 2004;50(2):476–487. PubMed ID: 14872490 doi:10.1002/art.20000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Knoop J, Steultjens MP, van der Leeden M, et al. Proprioception in knee osteoarthritis: a narrative review. Osteoarthritis Cartilage. 2011;19(4):381–388. PubMed ID: 21251988 doi:10.1016/j.joca.2011.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    O’sullivan SB, Schmitz TJ, Fulk G. Physical Rehabilitation. Philadelphia, PA: FA Davis; 2013.

  • 34.

    Bosomworth NJ. Exercise and knee osteoarthritis: benefit or hazard? Can Fam Physician. 2009;55(9):871–878. PubMed ID: 19752252

All Time Past Year Past 30 Days
Abstract Views 120 120 16
Full Text Views 13 13 4
PDF Downloads 7 7 2