Upper Trunk–Pelvis Coordination During Running Using the Continuous Relative Fourier Phase Method

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The upper trunk–pelvic coordination patterns used in running are not well understood. The purposes of this study are to (1) test the running speed effect on the upper trunk–pelvis axial rotation coordination and (2) present a step-by-step guide of the relative Fourier phase algorithm, as well as some further issues to consider. A total of 20 healthy young adults were tested under 3 treadmill running speeds using a 3-dimensional motion capture system. The upper trunk and pelvic segmental angles in axial rotation were calculated, and the coordination was quantified using the relative Fourier phase method. Results of multilevel modeling indicated that running speed did not significantly contribute to the changes in coordination in a linear pattern. A qualitative template analysis suggested that participants displayed different change patterns of coordination as running speed increased. Participants did not significantly change the upper trunk and pelvis coordination mode in a linear pattern at higher running speeds, possibly because they employed different motion strategies to achieve higher running speeds and thus displayed large interparticipant variations. For most of our runners, running at a speed deviated from the preferred speed could alter the upper trunk–pelvis coordination. Future studies are still needed to better understand the influence of altered coordination on running performance and injuries.

Li is with the Department of Kinesiology, California State University, Chico, CA, USA. Kakar is with the Department of Physical Therapy, Ithaca College, Ithaca, NY, USA. Walker and Simpson are with the Department of Kinesiology, University of Georgia, Athens, GA, USA. Guan is with the Department of Psychology, University of Georgia, Athens, GA, USA.

Li (yli41@csuchico.edu) is corresponding author.
  • 1.

    Lamoth CJ, Meijer OG, Wuisman PI, van Dieën JH, Levin MF, Beek PJ. Pelvis-thorax coordination in the transverse plane during walking in persons with nonspecific low back pain. Spine. 2002;27(4):9299. doi:10.1097/00007632-200202150-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Huang Y, Meijer OG, Lin J, et al. The effects of stride length and stride frequency on trunk coordination in human walking. Gait Posture. 2010;31(4):444449. PubMed ID: 20171890 doi:10.1016/j.gaitpost.2010.01.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Seay JF, Van Emmerik RE, Hamill J. Influence of low back pain status on pelvis-trunk coordination during walking and running. Spine. 2011;36(16):E1070E1079. doi:10.1097/BRS.0b013e3182015f7c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bruijn SM, Meijer OG, van Dieën JH, Kingma I, Lamoth CJ. Coordination of leg swing, thorax rotations, and pelvis rotations during gait: the organisation of total body angular momentum. Gait Posture. 2008;27(3):455462. PubMed ID: 17669652 doi:10.1016/j.gaitpost.2007.05.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chang R, Van Emmerik R, Hamill J. Quantifying rearfoot-forefoot coordination in human walking. J Biomech. 2008;41(14):31013105. PubMed ID: 18778823 doi:10.1016/j.jbiomech.2008.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lamoth CJ, Beek PJ, Meijer OG. Pelvis-thorax coordination in the transverse plane during gait. Gait Posture. 2002;16:101114. PubMed ID: 12297252 doi:10.1016/S0966-6362(01)00146-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barela JA, Whitall J, Black P, Clark JE. An examination of constraints affecting the intralimb coordination of hemiparetic gait. Hum Mov Sci. 2000;19:251273. doi:10.1016/S0167-9457(00)00014-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    McGibbon CA, Krebs DE. Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol. 2001;85(5):19231931.

  • 9.

    Herr H, Popovic M. Angular momentum in human walking. J Exp Biol. 2008;211:467481. PubMed ID: 18245623 doi:10.1242/jeb.008573

  • 10.

    Van Emmerik RE, Wagenaar RC, Winogrodzka A, Wolters EC. Identification of axial rigidity during locomotion in parkinson disease. Arch Phys Med Rehabil. 1999;80(2):186191. PubMed ID: 10025495 doi:10.1016/S0003-9993(99)90119-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Miller RH, Meardon SA, Derrick TR, Gillette JC. Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome. J Appl Biomech. 2008;24(3):262270.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Seay JF, Van Emmerik RE, Hamill J. Trunk bend and twist coordination is affected by low back pain status during running. Eur J Sport Sci. 2014;14(6):563568.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Seay JF, Van Emmerik RE, Hamill J. Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin Biomech. 2011;26(6):572578. doi:10.1016/j.clinbiomech.2010.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hinrichs RN. Upper extremity function in running. II: angular momentum considerations. Int J Sport Biomech. 1987;3(3):242263. doi:10.1123/ijsb.3.3.242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926934. PubMed ID: 15179160 doi:10.1249/01.MSS.0000128145.75199.C3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Peters BT, Haddad JM, Heiderscheit BC, Van Emmerik RE, Hamill J. Limitations in the use and interpretation of continuous relative phase. J Biomech. 2003;36(2):271274. PubMed ID: 12547366 doi:10.1016/S0021-9290(02)00341-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lamoth CJ, Daffertshofer A, Huys R, Beek PJ. Steady and transient coordination structures of walking and running. Hum Mov Sci. 2009;28(3):371386. PubMed ID: 19027972 doi:10.1016/j.humov.2008.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wu W, Meijer OG, Lamoth CJ, et al. Gait coordination in pregnancy: transverse pelvic and thoracic rotations and their relative phase. Clin Biomech. 2004;19(5):480488. doi:10.1016/j.clinbiomech.2004.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman PI, Beek PJ. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J. 2006;15(1):2340. PubMed ID: 15864670 doi:10.1007/s00586-004-0825-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Van Emmerik RE, Miller RH, Hamill J. Dynamical systems analysis of coordination. In: Robertson DGE, Caldwell GE, Hammill J, Kamen G, Whittlesey SN, eds. Research Methods in Biomechanics. 2nd ed. Champaign, IL: Human Kinetics; 2014:311.

    • Search Google Scholar
    • Export Citation
  • 21.

    Gelman A. Multilevel (hierarchical) modeling: what it can and cannot do. Technometrics. 2006;48(3):432435. doi:10.1198/004017005000000661

  • 22.

    King N. Template analysis. In: Symon G, Cassell C, eds. Qualitative Methods and Analysis in Organizational Research: A Practical Guide. London, UK: Sage; 1998:118134.

    • Search Google Scholar
    • Export Citation
  • 23.

    Gracovetsky S. An hypothesis for the role of the spine in human locomotion: a challenge to current thinking. J Biomed Eng. 1985;7(3):205216. PubMed ID: 4033096 doi:10.1016/0141-5425(85)90021-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 239 239 13
Full Text Views 10 10 0
PDF Downloads 7 7 0