Lower-Extremity Kinematics Differed Between a Controlled Drop-Jump and Volleyball-Takeoffs

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Previous studies utilizing jump-landing biomechanics to predict anterior cruciate ligament injuries have shown inconsistent findings. The purpose of this study was to quantify the differences and correlations in jump-landing kinematics between a drop-jump, a controlled volleyball-takeoff, and a simulated-game volleyball-takeoff. Seventeen female volleyball players performed these 3 tasks on a volleyball court, while 3-dimensional kinematic data were collected by 3 calibrated camcorders. Participants demonstrated significantly increased jump height, shorter stance time, increased time differences in initial contact between 2 feet, increased knee and hip flexion at initial contact and decreased peak knee and hip flexion for both left and right legs, and decreased knee–ankle distance ratio at the lowest height of midhip for the 2 volleyball-takeoffs compared with the drop-jump (P < .05, Cohen’s dz ≥ 0.8). Significant correlations were observed for all variables between the 2 volleyball-takeoffs (P < .05, ρ ≥ .6) but were not observed for most variables between the drop-jump and 2 volleyball-takeoffs. Controlled drop-jump kinematics may not represent jump-landing kinematics exhibited during volleyball competition. Jump-landing mechanics during sports-specific tasks may better represent those exhibited during sports competition and their associated risk of anterior cruciate ligament injury compared with the drop-jump.

Beardt, McCollum, Hinshaw, Layer, Zhu, and Dai are with the Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA. Wilson is with the Department of Theatre and Dance, University of Wyoming, Laramie, WY, USA.

Dai (bdai@uwyo.edu) is corresponding author.
  • 1.

    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med. 2015;43:15831590. PubMed ID: 25899429 doi:10.1177/0363546515578836

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014;49:806819. PubMed ID: 25232663 doi:10.4085/1062-6050-49.3.35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mandelbaum BR, Silvers HJ, Watanabe DS, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med. 2005;33:10031010. PubMed ID: 15888716 doi:10.1177/0363546504272261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gilchrist J, Mandelbaum BR, Melancon H, et al. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med. 2008;36:14761483. PubMed ID: 18658019 doi:10.1177/0363546508318188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Joy EA, Taylor JR, Novak MA, Chen M, Fink BP, Porucznik CA. Factors influencing the implementation of anterior cruciate ligament injury prevention strategies by girls soccer coaches. J Strength Cond Res. 2013;27:22632269. PubMed ID: 23287828 doi:10.1519/JSC.0b013e31827ef12e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Agel J, Rockwood T, Klossner D. Collegiate ACL injury rates across 15 sports: national collegiate athletic association injury surveillance system data update (2004–2005 through 2012–2013). Clin J Sport Med. 2016;26:518523. PubMed ID: 27315457 doi:10.1097/JSM.0000000000000290

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42:311319. PubMed ID: 17710181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Taylor JB, Waxman JP, Richter SJ, Shultz SJ. Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. Br J Sports Med. 2015;49:7987. PubMed ID: 23922282 doi:10.1136/bjsports-2013-092358

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sugimoto D, Myer GD, McKeon JM, Hewett TE. Evaluation of the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a critical review of relative risk reduction and numbers-needed-to-treat analyses. Br J Sports Med. 2012;46:979988. PubMed ID: 22745221 doi:10.1136/bjsports-2011-090895

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dai B, Mao M, Garrett WE, Yu B. Biomechanical characteristics of an anterior cruciate ligament injury in javelin throwing. J Sport Health Sci. 2015;4:333340. doi:10.1016/j.jshs.2015.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32:10021012. PubMed ID: 15150050 doi:10.1177/0363546503261724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35:359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stuelcken MC, Mellifont DB, Gorman AD, Sayers MG. Mechanisms of anterior cruciate ligament injuries in elite women’s netball: a systematic video analysis. J Sports Sci. 2016;34:15161522. PubMed ID: 26644060 doi:10.1080/02640414.2015.1121285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy. 2007;23:13201325.e6. PubMed ID: 18063176 doi:10.1016/j.arthro.2007.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train. 2015;50:589595. PubMed ID: 25811846 doi:10.4085/1062-6050-50.1.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Goetschius J, Smith HC, Vacek PM, et al. Application of a clinic-based algorithm as a tool to identify female athletes at risk for anterior cruciate ligament injury: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med. 2012;40:19781984. PubMed ID: 22879400 doi:10.1177/0363546512456972

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Smith HC, Johnson RJ, Shultz SJ, et al. A prospective evaluation of the landing error scoring system (LESS) as a screening tool for anterior cruciate ligament injury risk. Am J Sports Med. 2012;40:521526. PubMed ID: 22116669 doi:10.1177/0363546511429776

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Krosshaug T, Steffen K, Kristianslund E, et al. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44:874883. PubMed ID: 26867936 doi:10.1177/0363546515625048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Leppanen M, Pasanen K, Kujala UM, et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2017;45:386393. PubMed ID: 27637264 doi:10.1177/0363546516665810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fox AS, Bonacci J, McLean SG, Saunders N. Efficacy of ACL injury risk screening methods in identifying high-risk landing patterns during a sport-specific task. Scand J Med Sci Sports. 2017;27:525534. PubMed ID: 27292768 doi:10.1111/sms.12715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kristianslund E, Krosshaug T. Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening. Am J Sports Med. 2013;41:684688. PubMed ID: 23287439 doi:10.1177/0363546512472043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dai B, Cook RF, Meyer EA, et al. The effect of a secondary cognitive task on landing mechanics and jump performance. Sports Biomech. 2018;17(2):192205. PubMed ID: 28632053 doi:10.1080/14763141.2016.1265579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Stephenson ML, Hinshaw TJ, Wadley HA, et al. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks. Sports Biomech. 2018;17:6782. PubMed ID: 28730871 doi:10.1080/14763141.2017.1346141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Abdel-Aziz YI, Karara HM. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Proceedings of the Symposium on Close-Range Photogrammetry, Urbana, IL. 1971:118.

    • Export Citation
  • 26.

    Yu B, Andrews JG. The relationship between free limb motions and performance in the triple jump. J Appl Biomech. 1998;14:223237. doi:10.1123/jab.14.2.223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Bennett HJ, Shen G, Weinhandl JT, Zhang S. Validation of the greater trochanter method with radiographic measurements of frontal plane hip joint centers and knee mechanical axis angles and two other hip joint center methods. J Biomech. 2016;49:30473051. PubMed ID: 27344200 doi:10.1016/j.jbiomech.2016.06.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bakker R, Tomescu S, Brenneman E, Hangalur G, Laing A, Chandrashekar N. The effect of sagittal plane mechanics on ACL strain during jump landing. J Orthop Res. 2016;34:16361644. PubMed ID: 26771080 doi:10.1002/jor.23164

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dai B, Mao D, Garrett WE, Yu B. Anterior cruciate ligament injuries in soccer: loading mechanisms, risk factors, and prevention programs. J Sport Health Sci. 2014;3:299306. doi:10.1016/j.jshs.2014.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Taylor KA, Terry ME, Utturkar GM, et al. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech. 2011;44:365371. PubMed ID: 21092960 doi:10.1016/j.jbiomech.2010.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Yu B, Lin CF, Garrett WE. Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon). 2006;21:297305. doi:10.1016/j.clinbiomech.2005.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Mizner RL, Chmielewski TL, Toepke JJ, Tofte KB. Comparison of 2-dimensional measurement techniques for predicting knee angle and moment during a drop vertical jump. Clin J Sport Med. 2012;22:221227. PubMed ID: 22544058 doi:10.1097/JSM.0b013e31823a46ce

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Dai B, Zhu Q, Ning X, Leigh S. Video-based motion capture to calculate 3D knee kinematics and kinetics during landing. Proceeding of 7th World Congress of Biomechanics. Boston, MA; 2014.

    • Export Citation
  • 34.

    Leigh S. The Influence of Technique on Throwing Performance and Injury Risk in Javelin Throwers. [Doctoral dissertation]. Chapel Hill, NC: University of North Carolina; 2012.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mok KM, Petushek E, Krosshaug T. Reliability of knee biomechanics during a vertical drop jump in elite female athletes. Gait Posture. 2016;46:173178. PubMed ID: 27131197 doi:10.1016/j.gaitpost.2016.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 37.

    Dai B, Garrett WE, Gross MT, Padua DA, Queen RM, Yu B. The effect of performance demands on lower extremity biomechanics during landing and cutting tasks [published online ahead of print November 17, 2016]. J Sport Health Sci. https://www.sciencedirect.com/science/article/pii/S2095254616301016?via%3Dihub. doi:10.1016/j.jshs.2016.11.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Donohue MR, Ellis SM, Heinbaugh EM, Stephenson ML, Zhu Q, Dai B. Differences and correlations in knee and hip mechanics during single-leg landing, single-leg squat, double-leg landing, and double-leg squat tasks. Res Sports Med. 2015;23:394411. PubMed ID: 26275102 doi:10.1080/15438627.2015.1076413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bates NA, Hewett TE. Motion analysis and the anterior cruciate ligament: classification of injury risk. J Knee Surg. 2016;29:117125. PubMed ID: 26383143 doi:10.1055/s-0035-1558855

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Yeow CH, Lee PV, Goh JC. An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Hum Mov Sci. 2011;30:624635. PubMed ID: 21411162 doi:10.1016/j.humov.2010.11.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 517 484 58
Full Text Views 41 40 3
PDF Downloads 26 26 2