The Effects of Filter Cutoff Frequency on Musculoskeletal Simulations of High-Impact Movements

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Toronto
  • 2 University of Waterloo
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Estimation of muscle forces through musculoskeletal simulation is important in understanding human movement and injury. Unmatched filter frequencies used to low-pass filter marker and force platform data can create artifacts during inverse dynamics analysis, but their effects on muscle force calculations are unknown. The objective of this study was to determine the effects of filter cutoff frequency on simulation parameters and magnitudes of lower-extremity muscle and resultant joint contact forces during a high-impact maneuver. Eight participants performed a single-leg jump landing. Kinematics was captured with a 3D motion capture system, and ground reaction forces were recorded with a force platform. The marker and force platform data were filtered using 2 matched filter frequencies (10–10 Hz and 15–15 Hz) and 2 unmatched filter frequencies (10–50 Hz and 15–50 Hz). Musculoskeletal simulations using computed muscle control were performed in OpenSim. The results revealed significantly higher peak quadriceps (13%), hamstrings (48%), and gastrocnemius forces (69%) in the unmatched (10–50 Hz and 15–50 Hz) conditions than in the matched (10–10 Hz and 15–15 Hz) conditions (P < .05). Resultant joint contact forces and reserve (nonphysiologic) moments were similarly larger in the unmatched filter categories (P < .05). This study demonstrated that artifacts created from filtering with unmatched filter cutoffs result in altered muscle forces and dynamics that are not physiologic.

Tomescu is with the Division of Orthopaedic Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada. Bakker and Chandrashekar are with the Structural Biomechanics Laboratory, Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada. Beach is with the Musculoskeletal Biomechanics and Injury Prevention Lab, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada.

Tomescu (sstomescu@gmail.com) is corresponding author.
  • 1.

    Bakker R, Tomescu S, Brenneman E, Hangalur G, Laing A, Chandrashekar N. Effect of sagittal plane mechanics on ACL strain during jump landing. J Orthop Res. 2016;34(9):16361644. PubMed ID: 26771080 doi:10.1002/jor.23164

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O’Connor KM. The effects of single-leg landing technique on ACL loading. J Biomech. 2011;44(10):18451851. PubMed ID: 21561623 doi:10.1016/j.jbiomech.2011.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mokhtarzadeh H, Yeow CH, Hong Goh JC, Oetomo D, Malekipour F, Lee PVS. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J Biomech. 2013;46(11):19131920. PubMed ID: 23731572 doi:10.1016/j.jbiomech.2013.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pezzack JC, Norman RW, Winter DA. An assessment of derivative determining techniques used for motion analysis. J Biomech. 1977;10(5–6):377382. PubMed ID: 893476 doi:10.1016/0021-9290(77)90010-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):24382444. PubMed ID: 16209869 doi:10.1016/j.jbiomech.2005.07.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kristianslund E, Krosshaug T, van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kristianslund E, Krosshaug T, van den Bogert AJ. Artefacts in measuring joint moments may lead to incorrect clinical conclusions: the nexus between science (biomechanics) and sports injury prevention! Br J Sports Med. 2012;47(8):470473. PubMed ID: 22872681 doi:10.1136/bjsports-2012-091199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Morgan KD, Donnelly CJ, Reinbolt JA. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk. J Biomech. 2014;47(13):32953302. PubMed ID: 25218505 doi:10.1016/j.jbiomech.2014.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hamner SR, Delp SL. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J Biomech. 2013;46(4):780787. PubMed ID: 23246045 doi:10.1016/j.jbiomech.2012.11.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running. J Biomech. 2010;43(14):27092716. PubMed ID: 20691972 doi:10.1016/j.jbiomech.2010.06.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lu TW, O’Connor JJ. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech. 1999;32(2):129134. PubMed ID: 10052917 doi:10.1016/S0021-9290(98)00158-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech. 2006;39(6):11071115. PubMed ID: 16023125 doi:10.1016/j.jbiomech.2005.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Roewer BD, Ford KR, Myer GD, Hewett TE. The “impact” of force filtering cut-off frequency on the peak knee abduction moment during landing: artefact or “artifiction”? Br J Sports Med. 2014;48(6):464468. PubMed ID: 22893510 doi:10.1136/bjsports-2012-091398

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bates NA, Ford KR, Myer GD, Hewett TE. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clin Biomech. 2013;28(7):796799. doi:10.1016/j.clinbiomech.2013.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bates NA, Ford KR, Myer GD, Hewett TE. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments. Clin Biomech. 2013;28(4):459466. doi:10.1016/j.clinbiomech.2013.02.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Steele K, Demers M, Schwartz M, Delp S. Compressive tibiofemoral force during crouch gait. Gait Posture. 2012;35(4):556560. PubMed ID: 22206783 doi:10.1016/j.gaitpost.2011.11.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lerner ZF, Haight DJ, DeMers MS, Board WJ, Browning RC. The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling. J Appl Biomech. 2015;30(2):197205. doi:10.1123/jab.2012-0206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hicks J. Simulation with OpenSim. 2012. https://simtk-confluence.stanford.edu/display/OpenSim/Getting+Started+with+CMC. Accessed July 2015.

    • Search Google Scholar
    • Export Citation
  • 20.

    Edwards WB, Troy KL, Derrick TR. On the filtering of intersegmental loads during running. Gait Posture. 2011;34(3):435438. PubMed ID: 21727008 doi:10.1016/j.gaitpost.2011.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bezodis N, Salo A, Trewartha G. Excessive fluctuations in knee joint moments during early stance in sprinting are caused by digital filtering procedures. Gait Posture. 2013;38(4):653657. PubMed ID: 23540768 doi:10.1016/j.gaitpost.2013.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kar J, Quesada PM. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities. Ann Biomed Eng. 2012;40(8):16791691. PubMed ID: 22527014 doi:10.1007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Leardini A, Belvedere C, Nardini F, Sancisi N, Conconi M, Parenti-Castelli V. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J Biomech. 2017;62:7786. PubMed ID: 28601242 doi:10.1016/j.jbiomech.2017.04.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 490 346 116
Full Text Views 29 12 0
PDF Downloads 23 13 0