A Practical Estimation Method for Center of Mass Velocity in Swimming Direction During Front Crawl Swimming

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Center of mass (CoM) velocity variation in swimming direction is related to swimming performance and efficiency. However, it is difficult to calculate the CoM velocity during swimming. Therefore, we aimed to establish a practical estimation method for the CoM velocity in swimming direction during front crawl swimming with underwater cameras. Ten swimmers were recorded during front crawl swimming (25 m, maximal effort) using a motion capture system with 18 underwater and 9 land cameras. Three CoM velocity estimation methods were constructed (single-hip velocity, both-hips velocity, and both-hips velocity with simulated arm velocity correction). Each model was validated against the actual CoM velocity. The difference between the single-hip velocity and the actual CoM velocity in swimming direction was significantly larger compared with that of the other 2 models. Furthermore, the accuracy of CoM velocity estimation was increased when both-hips velocity was corrected using the simulated arm velocity. The method allowed estimation of the CoM velocity with only 2 underwater cameras with a maximal difference of 0.06 m·s−1. This study established a novel and practical method for the estimation of the CoM velocity in swimming direction during front crawl swimming.

The authors are with the Japan Institute of Sports Sciences, Tokyo, Japan.

Matsuda (damatsu0512@gmail.com) is corresponding author.
  • 1.

    Barbosa TM, Keskinen KL, Fernandes R, Colaço P, Lima AB, Vilas-Boas JP. Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. Eur J Appl Physiol. 2005;93(5–6):519–523. PubMed ID: 15605282 doi:10.1007/s00421-004-1251-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Figueiredo P, Barbosa TM, Vilas-Boas JP, Fernandes RJ. Energy cost and body centre of mass’ 3D intracycle velocity variation in swimming. Eur J Appl Physiol. 2012;112(9):3319–3326. PubMed ID: 22262010 doi:10.1007/s00421-011-2284-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Psycharakis SG, Naemi R, Connaboy C, McCabe C, Sanders RH. Three-dimensional analysis of intracycle velocity fluctuations in frontcrawl swimming. Scand J Med Sci Sports. 2010;20(1):128–135. PubMed ID: 19486479 doi:10.1111/j.1600-0838.2009.00891.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum Mov Sci. 2004;22(6):597–610. PubMed ID: 15063043 doi:10.1016/j.humov.2003.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mapelli A, Zago M, Fusini L, Galante D, Colombo A, Sforza C. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport. Gait Posture. 2014;39(1):460–465. PubMed ID: 24054347 doi:10.1016/j.gaitpost.2013.08.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Matsuda Y, Yamada Y, Ikuta Y, Nomura T, Oda S. Intracyclic velocity variation and arm coordination for different skilled swimmers in the front crawl. J Hum Kinet. 2014;44(1):67–74. doi:10.2478/hukin-2014-0111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Schnitzler C, Seifert L, Alberty M, Chollet D. Hip velocity and arm coordination in front crawl swimming. Int J Sports Med. 2010;31(12):875–881. PubMed ID: 21072734 doi:10.1055/s-0030-1265149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fernandes RJ, Ribeiro J, Figueiredo P, Seifert L, Vilas-Boas JP. Kinematics of the hip and body center of mass in front crawl. J Hum Kinet. 2012;33:15–23. PubMed ID: 23486784 doi:10.2478/v10078-012-0040-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Psycharakis SG, Sanders RH. Validity of the use of a fixed point for intracycle velocity calculations in swimming. J Sci Med Sport. 2009;12(2):262–265. PubMed ID: 18289938 doi:10.1016/j.jsams.2007.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kudo S, Sakurai Y, Miwa T, Matsuda Y. Relationship between shoulder roll and hand propulsion in the front crawl stroke. J Sports Sci. 2017;35(10):945–952. PubMed ID: 27414043 doi:10.1080/02640414.2016.1206208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Chollet D, Chalies S, Chatard JC. A new index of coordination for the crawl: description and usefulness. Int J Sports Med. 2000;21(1):54–59. PubMed ID: 10683100 doi:10.1055/s-2000-8855

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Seifert L, Chollet D, Bardy BG. Effect of swimming velocity on arm coordination in the front crawl: a dynamic analysis. J Sports Sci. 2004;22(7):651–660. PubMed ID: 15370496 doi:10.1080/02640410310001655787

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Michiyoshi AE, Tang H-p, Yokoi T. Estimation of inertia properties of the body segments in Japanese athletes. Biomechanisms. 1992;11:23–33. doi:10.3951/biomechanisms.11.23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Figueiredo P, Vilas Boas JP, Maia J, Gonçalves P, Fernandes RJ. Does the hip reflect the centre of mass swimming kinematics? Int J Sports Med. 2009;30(11):779–781. PubMed ID: 19838978 doi:10.1055/s-0029-1234059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Eames MHA, Cosgrove A, Baker R. Comparing methods of estimating the total body centre of mass in three-dimensions in normal and pathological gaits. Hum Mov Sci. 1999;18(5):637–646. doi:10.1016/S0167-9457(99)00022-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Whittle MW. Three-dimensional motion of the center of gravity of the body during walking. Hum Mov Sci. 1997;16(2):347–355. doi:10.1016/S0167-9457(96)00052-8

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 126 126 15
Full Text Views 11 11 4
PDF Downloads 7 7 2