The Effects of Walking Workstations on Biomechanical Performance

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. A total of 9 participants completed 4 walking trials at 2.4 and 4.0 km·h−1: baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion, and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (P ≤ .05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.

Grindle, Furr, Puterio, and Higginson are with the Department of Mechanical Engineering, University of Delaware, Newark, DE, USA. Baker and Higginson are with the Department of Biomedical Engineering, University of Delaware, Newark, DE, USA. Knarr is with the Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.

Higginson (higginson@udel.edu) is corresponding author.
  • 1.

    Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299(5608):853–855. PubMed ID: 12574618 doi:10.1126/science.1079857

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ergotron Inc. Ergotron JustStand survey & index report. 2013. https://www.juststand.org/resource/juststand-index/#746. Accessed May, 2016.

    • Export Citation
  • 3.

    Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE. Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc. 2010;85(12):1138–1141. PubMed ID: 21123641 doi:10.4065/mcp.2010.0444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults, a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–132. PubMed ID: 25599350 doi:10.7326/M14-1651

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cooley D, Pedersen S. A pilot Study of increasing nonpurposeful movement breaks at work as a means of reducing prolonged sitting. J Environ Public Health. 2013;2013:128376. PubMed ID: 23690798 doi:10.1155/2013/128376

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bantoft C, Summers MJ, Tranent PJ, Palmer MA, Cooley PD, Pedersen SJ. Effect of standing or walking at a workstation on cognitive function: a randomized counterbalanced trial. Hum Factors. 2015;58(1):140–149. PubMed ID: 26408647 doi:10.1177/0018720815605446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Sliter M, Yuan Z. Workout at work: laboratory test of psychological and performance outcomes of active workstations. J Occup Health Psychol. 2015;20(2):259–271. PubMed ID: 25347682 doi:10.1037/a0038175

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cifuentes M, Qin J, Fulmer S, Bello A. Facilitators and barriers to using treadmill workstations under real working conditions: a qualitative study in female office workers. Am J Health Promot. 2015;30(2):93–100. doi:10.4278/ajhp.140123-QUAL-43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Beers EA, Roemmich JN, Epstein LH, Horvath PJ. Increasing passive energy expenditure during clerical work. Eur J Appl Psychol. 2008;103:353–360. PubMed ID: 18351381 doi:10.1007/s00421-008-0713-y

    • Search Google Scholar
    • Export Citation
  • 10.

    Straker L, Levine J, Campbell A. The effects of walking and cycling computer workstations on keyboard and mouse performance. Hum Factors. 2009;51:831–844. PubMed ID: 20415158 doi:10.1177/0018720810362079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lindenberger U, Marsiske M, Baltes PB. Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychol Aging. 2000;15:417–436. PubMed ID: 11014706 doi:10.1037/0882-7974.15.3.417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ylogev-seligmann G, Rotem-galili Y, Mirelman A, Dickstein R, Giladi N, Hausdorff JM. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys Ther. 2010;9(2):1–11. PubMed ID: 20023000 doi:10.2522/ptj.20090043

    • Search Google Scholar
    • Export Citation
  • 13.

    Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull. 2006;69(3):294–305. PubMed ID: 16564425 doi:10.1016/j.brainresbull.2006.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35(3):715–728. PubMed ID: 20833198 doi:10.1016/j.neubiorev.2010.08.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Schulz BW. Minimum toe clearance adaptations to floor surface irregularity and gait speed. J Biomech. 2011;44:1277–1284. PubMed ID: 21354576 doi:10.1016/j.jbiomech.2011.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Human solution. Ergonomic office desk, ergonomic chair, and keyboard height calculator. Human Solution Ergonomic Office Furniture. 2016. https://www.thehumansolution.com/ergonomic-office-desk-chair-and-keyboard-height-calculator/. Accessed September 9, 2017.

    • Search Google Scholar
    • Export Citation
  • 17.

    Ben-Ner A, Hamann DJ, Koepp G, Manohar CU, Levine J. Treadmill workstations: the effects of walking while working on physical activity and work performance. PLoS ONE. 2014;9(2):88620. doi:10.1371/journal.pone.0088620

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hsiao HY, Knarr BA, Higginson JS, Binder-Macleod SA. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum Mov Sci. 2015;39:212–221. PubMed ID: 25498289 doi:10.1016/j.humov.2014.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kesar TM, Binder-Macleod SA, Hicks GE, Reisman DS. Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture. 2011;33(2):314–317. PubMed ID: 21183350 doi:10.1016/j.gaitpost.2010.11.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wilken JM, Rodriguez KM, Brawner M, Darter BJ. Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture. 2012;35(2):301–307. PubMed ID: 22041096 doi:10.1016/j.gaitpost.2011.09.105

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lelas JL, Merriman GJ, Riley PO, Kerrigan DC. Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture. 2003;17:106–112. PubMed ID: 12633769 doi:10.1016/S0966-6362(02)00060-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Begg R, Best R, Dell’Oro L, Taylor S. Minimum foot clearance during walking: strategies for the minimization of trip-related falls. Gait Posture. 2007;25(2):191–198. doi:10.1016/j.gaitpost.2006.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Brand RA. The biomechanics and motor control of human gait: normal, elderly, and pathological. J Biomech. 1991;25(8):949. doi:10.1016/0021-9290(92)90236-T

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wikstrom EA, Mckeon PO. Manipulative therapy effectiveness following acute lateral ankle sprains: a systematic review. Athl Train Sports Health Care. 2011;3(6):271–279. doi:10.3928/19425864-20110131-02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hamel KA, Okita N, Higginson JS, Cavanagh PR. Foot clearance during stair descent: effects of age and illumination. Gait Posture. 2005;21(2):135–140. PubMed ID: 15639391 doi:10.1016/j.gaitpost.2004.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Grogan B. What is the normal range of motion of the knee? 2013. http://www.livestrong.com/article/40176-normal-range-motion-knee/. Accessed February 24, 2017.

    • Export Citation
  • 27.

    McAndrew PM, Dingwell JB, Wilken JM. Walking variability during continuous pseudo random oscillations of the support surface and visual field. J Biomech. 2010;43:1470–1475. PubMed ID: 20346453 doi:10.1016/j.jbiomech.2010.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Young PM, Dingwell JB. Voluntarily changing step length or step width affects dynamic stability of human walking. Gait Posture. 2012;35(3):472–477. doi:10.1016/j.gaitpost.2011.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Jeka JJ, Lackner JR. Fingertip contact influences human postural control. Exp Brain Res. 1994;100(3):495–502. PubMed ID: 7813685 doi:10.1007/BF02738408

  • 30.

    Harman E, Han KH, Frykman P, Pandorf C. The effects of walking speed on the biomechanics of backpack load carriage. Natick, MA: U.S. Army Research Institute of Environmental Medicine; 2000; Report No. 00–20.

    • Search Google Scholar
    • Export Citation
  • 31.

    Buckley JP. The sedentary office: a growing case for change towards better health and productivity. Br J Sports Med. 2015;49(21):1357–1362. PubMed ID: 26034192 doi:10.1136/bjsports-2015-094618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 276 276 65
Full Text Views 9 9 0
PDF Downloads 4 4 0