Effect of Impact Mechanism on Head Accelerations in Men’s Lacrosse Athletes

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Quantifying head impacts is a vital component to understanding and preventing head trauma in sport. Our objective was to establish the frequency and magnitude of head impact mechanisms in men’s lacrosse athletes. Eleven male lacrosse athletes wore xPatch sensors during activity. Video footage of practices and games was analyzed to verify impacts and code them with impact mechanisms. The authors calculated incidence rates (IRs) per 1000 exposures with corresponding 95% confidence intervals (CIs) and used multivariate analysis of variances to compare the linear (g) and rotational (rad/s2) accelerations between mechanisms. A total of 167 head impacts were successfully verified and coded with a mechanism using video footage during 542 total exposures. The highest IR was head to body (IR = 118.08; 95% CI, 89.15–147.01), and the lowest was head to ball (IR = 3.69; 95% CI, 0–8.80) (incidence rate ratio = 32.00; 95% CI, 67.83–130.73). Analysis indicated that impact mechanism failed to significantly alter the combined dependent variables (multivariate F10,306 = 1.79, P = .06, η2 = .06, 1−β = 0.83). While head to head, body to head, and stick to head mechanisms are penalty-inducing offenses in men’s lacrosse, head to ground, head to ball, and combination impacts have similar head accelerations. If penalties and rules are created to protect players from traumatic head injury, the authors recommend stricter enforcement.

Vollavanh, O’Day, Koehling, Bradney, and Bowman are with the Department of Athletic Training, University of Lynchburg, Lynchburg, VA. May is with Athletic Training Programs, University of Idaho, Moscow, ID. K.M. Breedlove is with the Department of Kinesiology, University of Michigan, Ann Arbor, MI. E.L. Breedlove and Nauman are with the School of Mechanical Engineering, Purdue University, West Lafayette, IN. Nauman is also with the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN; and the Department of Basic Medical Sciences, Purdue University, West Lafayette, IN. Goff is with the Department of Physics, Lynchburg College, Lynchburg, VA.

Bowman (bowman.t@lynchburg.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Broglio SPCantu RCGioia GAet al. National Athletic Trainers’ Association position statement: management of sport concussion. J Athl Train. 2014;49(2):245265. PubMed ID: 24601910 doi:10.4085/1062-6050-49.1.07

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Langlois JARutland-Brown WWald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375378. PubMed ID: 16983222 doi:10.1097/00001199-200609000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McCaffrey MAMihalik JPCrowell DHShields EWGuskiewicz KM. Measurement of head impacts in collegiate football players: clinical measures of concussion after high- and low-magnitude impacts. Neurosurgery. 2007;61(6):12361243. PubMed ID: 18162903 doi:10.1227/01.neu.0000306102.91506.8b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wilcox BJMachan JTBeckwith JGGreenwald RMBurmeister ECrisco JJ. Head-impact mechanisms in men’s and women’s collegiate ice hockey. J Athl Train. 2014;49(4):514520. PubMed ID: 25098659 doi:10.4085/1062-6050-49.3.19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Poole VNAbbas KShenk TEet al. MR spectroscopic evidence of brain injury in the non-diagnosed collision sport athlete. Dev Neuropsychol. 2014;39(6):459473. PubMed ID: 25144258 doi:10.1080/87565641.2014.940619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Talavage TMNauman EABreedlove ELet al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31(4):327338. PubMed ID: 20883154 doi:10.1089/neu.2010.1512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Breedlove KMBreedlove ELRobinson Met al. Detecting neurocognitive and neurophysiological changes as a result of subconcussive blows among high school football athletes. Athl Train Sports Health Care. 2014;6(3):119127. doi:10.3928/19425864-20140507-02

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Breedlove ELRobinson MTalavage TMet al. Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football. J Biomech. 2012;45(7):12651272. PubMed ID: 22381736 doi:10.1016/j.jbiomech.2012.01.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Abbas KShenk TEPoole VNet al. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connect. 2015;5(2):91101. PubMed ID: 25242171 doi:10.1089/brain.2014.0279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bailes JEPetraglia ALOmalu BINauman ETalavage T. Role of subconcussion in repetitive mild traumatic brain injury: a review. J Neurosurg. 2013;119(5):12351245. PubMed ID: 23971952 doi:10.3171/2013.7.JNS121822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dick RWRomani WAAgel JCase JGMarshall SW. Descriptive epidemiology of collegiate men’s lacrosse injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 through 2003–2004. J Athl Train. 2007;42:255261. PubMed ID: 17710174

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hootman JMDick RAgel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311319. PubMed ID: 17710181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    McCuen ESvaldi DBreedlove Ket al. Collegiate women’s soccer players suffer greater cumulative head impacts than their high school counterparts. J Biomech. 2015;48(13):37203723. PubMed ID: 26329462 doi:10.1016/j.jbiomech.2015.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mihalik JPBlackburn JTGreenwald RMCantu RCMarshall SWGuskiewicz KM. Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics. 2010;125(6):13941401. PubMed ID: 20478933 doi:10.1542/peds.2009-2849

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Reed NTaha TKieghtly Met al. Measurement of head impacts in youth ice hockey players. Int J Sports Med. 2010;31(11):826833. PubMed ID: 20830655 doi:10.1055/s-0030-1263103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Crisco JJFiore RBeckwith JGet al. Frequency and location of head impact exposures in individual collegiate football players. J Athl Train. 2010;45(6):549559. PubMed ID: 21062178 doi:10.4085/1062-6050-45.6.549

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Crisco JJWilcox BJBeckwith JGet al. Head impact exposure in collegiate football players. J Biomech. 2011;44(15):26732678. PubMed ID: 21872862 doi:10.1016/j.jbiomech.2011.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Crisco JJWilcox BJMachan JTet al. Magnitude of head impact exposures in individual collegiate football players. J Appl Biomech. 2012;28(2):174183. PubMed ID: 21911854 doi:10.1123/jab.28.2.174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Beckwith JGGreenwald RMChu JJet al. Head impact exposure sustained by football players on days of diagnosed concussion. Med Sci Sports Exerc. 2013;45(4):737746. PubMed ID: 23135363 doi:10.1249/MSS.0b013e3182792ed7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Brolinson PGManoogian SMcNeely DGoforth MGreenwald RDuma S. Analysis of linear head accelerations from collegiate football impacts. Curr Sports Med Rep. 2006;5(1):2328. PubMed ID: 16483513 doi:10.1097/01.CSMR.0000306515.87053.fa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Duma SMManoogian SJBussone WRet al. Analysis of real-time head accelerations in collegiate football players. Clin J Sports Med. 2005;15(1):38. PubMed ID: 15654184 doi:10.1097/00042752-200501000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kerr ZYCollins CLMihalik JPMarshall SWGuskiewicz KMComstock RD. Impact locations and concussion outcomes in high school football player-to-player collisions. Pediatrics. 2014;134(3):489496. PubMed ID: 25113292 doi:10.1542/peds.2014-0770

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pellman EJViano DCTucker AMCasson IRWaeckerle JF. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery. 2003;53(4):799812. PubMed ID: 14519212 doi:10.1093/neurosurgery/53.3.799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Rowson SBrolinson GGoforth MDietter DDuma S. Linear and angular head acceleration measurements in collegiate football. J Biomech Eng. 2009;131(6):061016. PubMed ID: 19449970 doi:10.1115/1.3130454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    O’Day KMKoehling EMVollavanh LRet al. Comparison of head impact location during games and practices in Division III men’s lacrosse players. Clin Biomech. 2017;43:2327. PubMed ID: 28178579 doi:10.1016/j.clinbiomech.2017.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Irick E. Student-athlete participation 1981–82–2015–16. 2016. http://www.ncaapublications.com/productdownloads/PR1516.pdf. Accessed February 21 2017.

    • Export Citation
  • 27.

    Nevins DSmith LKensrud J. Laboratory evaluation of wireless head impact sensor. Procedia Eng. 2015;112:175179. doi:10.1016/j.proeng.2015.07.195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Wu LCNangia VBui Ket al. In vivo evaluation of wearable head impact sensors. Ann Biomed Eng. 2016;44(4):12341245. PubMed ID: 26289941 doi:10.1007/s10439-015-1423-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cummiskey BSchiffmiller DTalavage TMet al. Reliability and accuracy of helmet-mounted and head-mounted devices used to measure head accelerations. Proc Inst Mech Eng P J Sport Eng Technol. 2017;231:144153. doi:10.1177/1754337116658395

    • Search Google Scholar
    • Export Citation
  • 30.

    Lincoln AECaswell SVAlmquist JLDunn REHinton RY. Video incident analysis of concussions in boys’ high school lacrosse. Am J Sports Med. 2013;41(4):756761. PubMed ID: 23413274 doi:10.1177/0363546513476265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cortes NLincoln AEMyer GDet al. Video analysis verification of head impact events measured by wearable sensors. Am J Sports Med. 2017;45(10):23792387. PubMed ID: 28541813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Knowles SBMarshall SWGuskiewicz KM. Issues in estimating risks and rates in sports injury research. J Athl Train. 2006;41(2):207. PubMed ID: 16791309

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lomax RGHahs-Vaughn DL. An Introduction to Statistical Concepts. London, England: Routledge; 2013.

  • 34.

    Pellman EJPowell JWViano DCet al. Concussion in professional football: epidemiological features of game injuries and review of the literature—part 3. Neurosurgery. 2004;54(1):8196. PubMed ID: 14683544 doi:10.1227/01.NEU.0000097267.54786.54

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Zimmerman D. 2010 NCAA men’s lacrosse annual meeting summary of changes. 2010. http://fs.ncaa.org/Docs/rules/mlax/2010/2011-12approvedruleschangesmemo.pdf. Accessed September 12 2016.

    • Export Citation
  • 36.

    Erev IIngram PRaz OShany D. Continuous punishment and the potential of gentle rule enforcement. Behav Processes. 2010;84(1):366371. PubMed ID: 20096753 doi:10.1016/j.beproc.2010.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Higgins MJBowman TG. A comparison of head impacts in National Collegiate Athletic Association Division 1 and Division 3 men’s lacrosse athletes [abstract]. J Athl Train. 2015;50(6):S241S242.

    • Search Google Scholar
    • Export Citation
  • 38.

    Caswell SVDeivert RG. Lacrosse helmet designs and the effects of impact forces. J Athl Train. 2002;37:164171. PubMed ID: 12937430

  • 39.

    Bowman TGBreedlove KMBreedlove ELDodge TMNauman EA. Impact attenuation properties of new and used lacrosse helmets. J Biomech. 2015;48:37823787. PubMed ID: 26429768 doi:10.1016/j.jbiomech.2015.08.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Breedlove KMBreedlove ELBowman TGNauman EA. Impact attenuation capabilities of football and lacrosse helmets. J Biomech. 2016;49(13):28382844. PubMed ID: 27416777 doi:10.1016/j.jbiomech.2016.06.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Rowson SDuma SM. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann Biomed Eng. 2013;41(5):873882. PubMed ID: 23299827 doi:10.1007/s10439-012-0731-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Bazarian JJZhu TZhong Jet al. Persistent, long-term cerebral white matter changes after sports-related repetitive head impacts. PLoS ONE. 2014;9(4):e94734. doi:10.1371/journal.pone.0094734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Guskiewicz KMMihalik JP. Biomechanics of sport concussion: quest for the elusive injury threshold. Exerc Sport Sci Rev. 2011;39(1):411. PubMed ID: 21088602 doi:10.1097/JES.0b013e318201f53e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 63 63 20
Full Text Views 7 7 1
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar
Cited By