Evaluating Performance During Maximum Effort Vertical Jump Landings

in Journal of Applied Biomechanics
View More View Less
  • 1 Texas Tech University
  • 2 University of Nevada, Las Vegas
  • 3 University of Texas
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The ability to rapidly complete a jump landing has received little attention in the literature despite the need for rapid performance in a number of sports. As such, our purpose was to investigate differences between groups of individuals who land quickly (FAST) and slowly (SLOW) relative to peak vertical ground reaction forces (vGRFs), loading rates, rates of vGRF attenuation, contributions to lower extremity mechanical energy absorption at the involved joints, and the onsets of preparatory joint flexion/dorsiflexion. Twenty-four healthy adults (26.1 [3.3] y, 75.7 [18.9] kg, 1.7 [0.1] m) were stratified into FAST and SLOW groups based on landing time across 8 jump-landing trials. Independent t tests (α = .05) and effect sizes (ESs; large ≥ 0.8) compared differences between groups. A greater rate of vGRF attenuation (P = .02; ES = 0.95) was detected in the FAST group. The FAST group also exhibited greater contributions to lower extremity energy absorption at the ankle (P = .03; ES = 0.98) and knee (P = .03; ES = 0.99) during loading and attenuation, respectively. The SLOW group exhibited greater contributions to energy absorption at the hip during loading (P = .02; ES = 1.10). Results suggest that individuals who land quickly utilize different energy absorption strategies than individuals who land slowly. Ultimately, the FAST group’s strategy resulted in superior landing performance (more rapid landing time).

Harry is with the Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX. Barker and Dufek are with the Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV. Eggleston is with the Department of Kinesiology, University of Texas at El Paso, TX.

Harry (john.harry@ttu.edu) is corresponding author.
  • 1.

    Dufek JS, Bates BT. The evaluation and prediction of impact forces during landings. Med Sci Sports Exerc. 1990;22(3):370377. PubMed ID: 2381305 doi:10.1249/00005768-199006000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Zhang SN, Bates BT, Dufek JS. Contributions of lower extremity joints to energy dissipation during landings. Med Sci Sports Exerc. 2000;32(4):812819. PubMed ID: 10776901 doi:10.1097/00005768-200004000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Harry JR, Barker LA, Mercer JA, Dufek JS. Vertical and horizontal impact force comparison during jump landings with and without rotation in NCAA division 1 male soccer players. J Strength Cond Res. 2017;31(7):17801786. PubMed ID: 27669194 doi:10.1519/JSC.0000000000001650

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    McNitt-Gray JL. Kinetics of the lower extremities during drop landings from three heights. J Biomech. 1993;26(9):10371046. PubMed ID: 8408086 doi:10.1016/S0021-9290(05)80003-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nigg BM, Bobbert M. On the potential of various approaches in load analysis to reduce the frequency of sports injuries. J Biomech. 1990;23:312. PubMed ID: 2081742 doi:10.1016/0021-9290(90)90036-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):24382444. PubMed ID: 16209869 doi:10.1016/j.jbiomech.2005.07.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mizner RL, Kawaguchi JK, Chmielewski TL. Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J Orthrop Sports Phys Ther. 2008;38(6):353361. PubMed ID: 18515963 doi:10.2519/jospt.2008.2726

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108115. PubMed ID: 1548984 doi:10.1249/00005768-199201000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Horita T, Komi P, Nicol C, Kyröläinen H. Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance. Eur J Appl Physiol. 2002;88(1–2):7684. PubMed ID: 12436273 doi:10.1007/s00421-002-0673-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Afifi M, Hinrichs RN. A mechanics comparison between landing from a countermovement jump and landing from stepping off a box. J Appl Biomech. 2012;28(1):19. PubMed ID: 22431209 doi:10.1123/jab.28.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Harry JR, Freedman Silvernail J, Mercer JA, Dufek JS. A bilateral comparison of vertical jump landings and step-off landings from equal heights. J Strength Cond Res. 2018;32(7):19371947. doi:10.1519/JSC.0000000000002093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wilson GJ, Lyttle AD, Ostrowski KJ, Murphy AJ. Assessing dynamic performance: a comparison of rate of force development tests. J Strength Cond Res. 1995;9(3):176181.

    • Search Google Scholar
    • Export Citation
  • 13.

    Floria P, Gómez-Landero LA, Suárez-Arrones L, Harrison AJ. Kinetic and kinematic analysis for assessing the differences in countermovement jump performance in rugby players. J Strength Cond Res. 2016;30(9):25332539. PubMed ID: 24736772 doi:10.1519/JSC.0000000000000502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bressel E, Cronin J. The landing phase of a pump strategies to minimize injuries. JOPERD. 2005;76(2):3035.

  • 15.

    Bobbert MF, Huijing PA, Van Ingen Schenau GJ. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med Sci Sports Exerc. 1987;19(4):339346. PubMed ID: 3657482

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bobbert MF, Huijing PA, van Ingen Schenau GJ. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med Sci Sports Exerc. 1987;19(4):332338. PubMed ID: 3657481

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rowley KM, Richards JG. Increasing plantarflexion angle during landing reduces vertical ground reaction forces, loading rates and the hip’s contribution to support moment within participants. J Sports Sci. 2015;33(18):19221931. PubMed ID: 25775364 doi:10.1080/02640414.2015.1018928

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vanezis A, Lees A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics. 2005;48(11–14):15941603. PubMed ID: 16338725 doi:10.1080/00140130500101262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Moolyk AN, Carey JP, Chiu LZ. Characteristics of lower extremity work during the impact phase of jumping and weightlifting. J Strength Cond Res. 2013;27(12):32253232. PubMed ID: 23442272 doi:10.1519/JSC.0b013e31828ddf19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Nordin AD, Dufek JS, James CR, Bates BT. Classifying performer strategies in drop landing activities. J Sports Sci. 2017;35(18):18581863. PubMed ID: 27724813 doi:10.1080/02640414.2016.1240876

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech. 2003;18(7):662669. PubMed ID: 12880714 doi:10.1016/S0268-0033(03)00090-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kulas A, Zalewski P, Hortobagyi T, DeVita P. Effects of added trunk load and corresponding trunk position adaptations on lower extremity biomechanics during drop-landings. J Biomech. 2008;41(1):180185. PubMed ID: 17678932 doi:10.1016/j.jbiomech.2007.06.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Norcross MF, Lewek MD, Padua DA, Shultz SJ, Weinhold PS, Blackburn JT. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses. J Athl Train. 2013;48(6):748756. PubMed ID: 23944382 doi:10.4085/1062-6050-48.4.09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Norcross MF, Johnson ST, Pollard CD, Chang EW, Hoffman MA. Normalization influences knee abduction moment results: could it influence ACL-injury research, too? J Sci Med Sport. 2017;20(4):318321. PubMed ID: 27816458 doi:10.1016/j.jsams.2016.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci. 2008;12(4):207218. doi:10.1080/10913670802349766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hamill J, Knutzen KM, Derrick TR. Biomechanical Basis of Human Movement. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2015.

  • 27.

    Janssen I, Sheppard JM, Dingley AA, Chapman DW, Spratford W. Lower extremity kinematics and kinetics when landing from unloaded and loaded jumps. J Appl Biomech. 2012;28(6):687693. PubMed ID: 23348132 doi:10.1123/jab.28.6.687

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sullivan GM, Feinn R. Using effect size-or why the P value is not enough. J Grad Med Educ. 2012;4(3):279282. PubMed ID: 23997866 doi:10.4300/JGME-D-12-00156.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Vincent W, Weir J. Statistics in Kinesiology. 4th ed. Champaign, IL: Human Kinetics; 2012.

  • 30.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 31.

    Yeow CH, Lee PV, Goh JC. Sagittal knee joint kinematics and energetics in response to different landing heights and techniques. Knee. 2010;17(2):127131. PubMed ID: 19720537 doi:10.1016/j.knee.2009.07.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    James CR. Considerations of movement variability in biomechanics research. In: Stergiou N, ed. Innovative Analyses of Human Movement. Champaign, IL: Human Kinetics; 2004:2962.

    • Search Google Scholar
    • Export Citation
  • 33.

    Kristianslund E, Krosshaug T, Van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bezodis NE, Salo AI, Trewartha G. Excessive fluctuations in knee joint moments during early stance in sprinting are caused by digital filtering procedures. Gait Posture. 2013;38(4):653657. PubMed ID: 23540768 doi:10.1016/j.gaitpost.2013.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 321 223 31
Full Text Views 51 38 5
PDF Downloads 15 10 2