Changes in Posture Following a Single Session of Long-Duration Water Immersion

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Transitioning between different sensory environments is known to affect sensorimotor function and postural control. Water immersion presents a novel environmental stimulus common to many professional and recreational pursuits, but is not well-studied with regard to its sensorimotor effects upon transitioning back to land. The authors investigated the effects of long-duration water immersion on terrestrial postural control outcomes in veteran divers. Eleven healthy men completed a 6-hour thermoneutral pool dive (4.57 m) breathing diver air. Center of pressure was observed before and 15 minutes after the dive under 4 conditions: (1) eyes open/stable surface (Open-Stable); (2) eyes open/foam surface (Open-Foam); (3) eyes closed/stable surface (Closed-Stable); and (4) eyes closed/foam surface (Closed-Foam). Postdive decreases in postural sway were observed in all testing conditions except for Open-Stable. The specific pattern of center of pressure changes in the postdive window is consistent with (1) a stiffening/overregulation of the ankle strategy during Open-Foam, Closed-Stable, and Closed-Foam or (2) acute upweighting of vestibular input along with downweighting of somatosensory, proprioceptive, and visual inputs. Thus, our findings suggest that postimmersion decreases in postural sway may have been driven by changes in weighting of sensory inputs and associated changes in balance strategy following adaptation to the aquatic environment.

Glass, Rhea, and Ross are with the Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC, USA. Wittstein is with the Department of Exercise Science, Elon University, Elon, NC, USA. Florian and Haran are with the Biomedical Research Department, Navy Experimental Diving Unit, Panama City, FL, USA. Haran is also with Warfighter Performance Department, Naval Submarine Medical Research Laboratory, Groton, CT, USA.

Haran (francis.j.haran.mil@mail.mil) is corresponding author.
  • 1.

    Nashner LM. Practical biomechanics and physiology of balance. In: Jacobson GP, Shepard NT eds. Balance Function Assessment and Management; San Diego, CA: Plural Publishing Inc. 2014:431.

    • Search Google Scholar
    • Export Citation
  • 2.

    Reason JT. Motion sickness adaptation: a neural mismatch model. J R Soc Med. 1978;71(11):819–829. PubMed ID: 731645 doi:10.1177/014107687807101109

  • 3.

    Nashner LM. Adaptation of human movement to altered environments. Trends Neurosci. 1982;5(10):358–361. doi:10.1016/0166-2236(82)90204-1

  • 4.

    Black FO, Paloski WH, Doxey-Gasway DD, Reschke MF. Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability. Acta Otolaryngol Suppl. 1995;520(pt 2):450–454. doi:10.3109/00016489509125296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jarchow T, Mast FW. The effect of water immersion on postural and visual orientation. Aviat Space Environ Med. 1999;70(9):879–886. PubMed ID: 10503753

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dalecki M, Bock O. Changed joint position sense and muscle activity in simulated weightlessness by water immersion. Aviat Space Environ Med. 2013;84(2):110–115. PubMed ID: 23447848 doi:10.3357/ASEM.3394.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Florian JP, Simmons EE, Chon KH, Faes L, Shykoff BE. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion. J Appl Physiol. 2013;115(9):1275–1289. doi:10.1152/japplphysiol.00466.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bennet P, Elliot D. The Physiology and Medicine of Diving. 4th ed. London, England: W.B. Saunders; 1993.

  • 9.

    Dalecki M, Bock O. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback. Aviat Space Environ Med. 2014;85(6):605–611. PubMed ID: 24919380 doi:10.3357/ASEM.3880.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dalecki M, Drager T, Mierau A, Bock O. Production of finely graded forces in humans: effects of simulated weightlessness by water immersion. Exp Brain Res. 2012;218(1):41–47. PubMed ID: 22237940 doi:10.1007/s00221-012-2999-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Seynnes O, Hue OA, Garrandes F, et al. Force steadiness in the lower extremities as an independent predictor of functional performance in older women. J Aging Phys Act. 2005;13(4):395–408. PubMed ID: 16301752 doi:10.1123/japa.13.4.395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Stelmach GE, Worringham CJ. Sensorimotor deficits related to postural stability. Implications for falling in the elderly. Clin Geriatr Med. 1985;1(3):679–694. PubMed ID: 3913516

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Land MF. Vision in air and water. In: Dejours P, Bolis L, Taylor CR, Weibel ER, eds. Comparative Physiology: Life in Water and on Land: Padova, Italy: IX-Liviana Press; 1987:289–302.

    • Search Google Scholar
    • Export Citation
  • 14.

    Barnard EE. Visual problems under water. Proc R Soc Med. 1961;54:755–756. PubMed ID: 13865074

  • 15.

    Brown JL. Orientation to the vertical during water immersion. DTIC Doc. 1961;32:209–217.

  • 16.

    Lavon H, Tal D, Kaminski-Graif G, Hershkovitz D, Shupak A. Vestibular evoked myogenic potentials and saccular plasticity in divers. Aviat Space Environ Med. 2010;81(2):103–106. PubMed ID: 20131649 doi:10.3357/ASEM.2672.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Paillard T, Noe F. Techniques and methods for testing the postural function in healthy and pathological subjects. Biomed Res Int. 2015;2015:891390. PubMed ID: 26640800

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kollegger H, Baumgartner C, Wöber C, Oder W, Deecke L. Spontaneous body sway as a function of sex, age, and vision: posturographic study in 30 healthy adults. Eur Neurol. 1992;32(5):253–259. PubMed ID: 1521545 doi:10.1159/000116836

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Massion J. Postural control system. Curr Opin Neurobiol. 1994;4(6):877–887. PubMed ID: 7888772 doi:10.1016/0959-4388(94)90137-6

  • 20.

    Massion J, Fabre JC, Mouchnino L, Obadia A. Body orientation and regulation of the center of gravity during movement under water. J Vestib Res. 1995;5(3):211–221. PubMed ID: 7627380 doi:10.1016/0957-4271(94)00031-V

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bressel E, Louder TJ, Dolny DG. Age-related changes in postural sway are not consistent between land and aquatic environments. J Geriatr Phys Ther. 2017;40(3):113–120. doi:10.1519/JPT.0000000000000081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schaefer SY, Louder TJ, Foster S, Bressel E. Effect of water immersion on dual-task performance: implications for aquatic therapy. Physiother Res Int. 2016;21(3):147–154. PubMed ID: 25891889 doi:10.1002/pri.1628

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Marinho-Buzelli AR, Rouhani H, Masani K, Verrier MC, Popovic MR. The influence of the aquatic environment on the control of postural sway. Gait Posture. 2017;51:70–76. PubMed ID: 27710837 doi:10.1016/j.gaitpost.2016.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Suomi R, Koceja DM. Postural sway characteristics in women with lower extremity arthritis before and after an aquatic exercise intervention. Arch Phys Med Rehabil. 2000;81(6):780–785. PubMed ID: 10857524 doi:10.1016/S0003-9993(00)90111-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    de Oliveira MR, da Silva RA, Dascal JB, Teixeira DC. Effect of different types of exercise on postural balance in elderly women: a randomized controlled trial. Arch Gerontol Geriatr. 2014;59(3):506–514. PubMed ID: 25239512 doi:10.1016/j.archger.2014.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Florian JP, Chon KH, Faes L, Shykoff BE. Breathing 100% oxygen during water immersion improves postimmersion cardiovascular responses to orthostatic stress. Physiol Rep. 2016;4(23):13031. PubMed ID: 28604343 doi:10.14814/phy2.13031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther. 1986;66(10):1548–1550. PubMed ID: 3763708 doi:10.1093/ptj/66.10.1548

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ferguson CJ. An effect size primer: a guide for clinicians and researchers. Prof Psychol Res Pr. 2009;40(5):532–538. doi:10.1037/a0015808

  • 29.

    Wise EA. Methods for analyzing psychotherapy outcomes: a review of clinical significance, reliable change, and recommendations for future directions. J Pers Assess. 2004;82(1):50–59. PubMed ID: 14979834 doi:10.1207/s15327752jpa8201_10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nietzel MT, Russell RL, Hemmings KA, Gretter ML. Clinical significance of psychotherapy for unipolar depression: a meta-analytic approach to social comparison. J Consult Clin Psychol. 1987;55(2):156–161. PubMed ID: 3571668 doi:10.1037/0022-006X.55.2.156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kuo AD, Zajac FE. Human standing posture: multi-joint movement strategies based on biomechanical constraints. Prog Brain Res. 1993;97:349–358. PubMed ID: 8234760

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gatev P, Thomas S, Kepple T, Hallett M. Feedforward ankle strategy of balance during quiet stance in adults. J Physiol. 1999;514(pt 3):915–928. doi:10.1111/j.1469-7793.1999.915ad.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986;55(6):1369–1381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Jilk DJ, Safavynia SA, Ting LH. Contribution of vision to postural behaviors during continuous support-surface translations. Exp Brain Res. 2014;232(1):169–180. doi:10.1007/s00221-013-3729-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Louder TJ, Bressel E, Baldwin M, Dolny DG, Gordin R, Miller A. Effect of aquatic immersion on static balance. Int J Aquat Res Educ. 2014;8(1):6.

    • Search Google Scholar
    • Export Citation
  • 37.

    Cleworth TW, Carpenter MG. Postural threat influences conscious perception of postural sway. Neurosci Lett. 2016;620:127–131. PubMed ID: 27016388 doi:10.1016/j.neulet.2016.03.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Richer N, Saunders D, Polskaia N, Lajoie Y. The effects of attentional focus and cognitive tasks on postural sway may be the result of automaticity. Gait Posture. 2017;54:45–49. PubMed ID: 28259038 doi:10.1016/j.gaitpost.2017.02.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):1097–1118. PubMed ID: 12205132 doi:10.1152/jn.2002.88.3.1097

  • 40.

    Peterka RJ, Loughlin PJ. Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol. 2004;91(1):410–423. PubMed ID: 13679407 doi:10.1152/jn.00516.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Sato D, Yamashiro K, Onishi H, Shimoyama Y, Yoshida T, Maruyama A. The effect of water immersion on short-latency somatosensory evoked potentials in human. BMC Neurosci. 2012;13:13. PubMed ID: 22272934 doi:10.1186/1471-2202-13-13

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Reschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Rev. 1998;28(1–2):102–117. doi:10.1016/S0165-0173(98)00031-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Layne CS, McDonald PV, Bloomberg JJ. Neuromuscular activation patterns during treadmill walking after space flight. Exp Brain Res. 1997;113(1):104–116. PubMed ID: 9028779 doi:10.1007/BF02454146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Mulavara AP, Feiveson AH, Fiedler J, et al. Locomotor function after long-duration space flight: effects and motor learning during recovery. Exp Brain Res. 2010;202(3):649–659. PubMed ID: 20135100 doi:10.1007/s00221-010-2171-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 67 67 8
Full Text Views 8 8 0
PDF Downloads 4 4 0