Interlimb Force Coordination in Bipedal Dance Jumps: Comparison Between Experts and Novices

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Bipedal tasks require interlimb coordination that improves with practice and acquisition of skills. The purpose of this study was to compare interlimb force coordination during dance-specific rate-controlled consecutive bipedal jumps (sautés) between expert dancers and nondancers. To analyze coordination of vertical ground reaction forces recorded under each leg, the vector coding approach was used. Although there were no differences in the patterns of interlimb force coordination between groups, the dancers exhibited less variability of interlimb force coordination during the transition phase from weight acceptance to propulsion as well as during the propulsion phase itself. The interlimb force coordination variability was associated with task performance only during the transition phase, which highlights the potential importance of control during this phase. In conclusion, expert dancers were better at reducing interlimb force coordination variability during the task-relevant transition phase, which was related to better performance at maintaining jump rate and jump height consistency.

Shih, Mikkelsen, and Kulig are with the Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA. Jarvis is with the Department of Kinesiology, California State University, Northridge, Northridge, CA, USA. Mikkelsen is also with the Department of Physical Medicine and Rehabilitation, Cedars-Sinai, Los Angeles, CA, USA.

Shih (haijungs@usc.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Lian OBEngebretsen LBahr R. Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med. 2005;33(4):561567. PubMed ID: 15722279 doi:10.1177/0363546504270454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Zwerver JBredeweg SWvan den Akker-Scheek I. Prevalence of jumper’s knee among nonelite athletes from different sports: a cross-sectional survey. Am J Sports Med. 2011;39(9):19841988. PubMed ID: 21737835 doi:10.1177/0363546511413370

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bernstein NA. The Co-ordination and Regulation of Movements. Vol 159. Oxford/London, UK: Pergamon Press; 1967.

  • 4.

    van Soest AJRoebroeck MEBobbert MFHuijing PAvan Ingen Schenau GJ. A comparison of one-legged and two-legged countermovement jumps. Med Sci Sports Exerc. 1985;17(6):635639. PubMed ID: 4079733 doi:10.1249/00005768-198512000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Salimpour YShadmehr R. Motor costs and the coordination of the two arms. J Neurosci. 2014;34(5):18061818. PubMed ID: 24478362 doi:10.1523/JNEUROSCI.3095-13.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Latash MLDanion FScholz JFZatsiorsky VMSchöner G. Approaches to analysis of handwriting as a task of coordinating a redundant motor system. Hum Mov Sci. 2003;22(2):153171. PubMed ID: 12667747 doi:10.1016/S0167-9457(02)00157-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wang CXiao YBurdet EGordon JSchweighofer N. The duration of reaching movement is longer than predicted by minimum variance. J Neurophysiol. 2016;116(5):23422345. PubMed ID: 27559137 doi:10.1152/jn.00148.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bobbert MFde Graaf WWJonk JNCasius LJ. Explanation of the bilateral deficit in human vertical squat jumping. J Appl Physiol. 2006;100(2):493499. doi:10.1152/japplphysiol.00637.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Worster KValvano JCarollo JJ. Sagittal plane coordination dynamics of typically developing gait. Clin Biomech. 2015;30(4):366372. doi:10.1016/j.clinbiomech.2015.02.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chang RVan Emmerik RHamill J. Quantifying rearfoot-forefoot coordination in human walking. J Biomech. 2008;41(14):31013105. PubMed ID: 18778823 doi:10.1016/j.jbiomech.2008.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Miller RHChang RBaird JLVan Emmerik REHamill J. Variability in kinematic coupling assessed by vector coding and continuous relative phase. J Biomech. 2010;43(13):25542560. PubMed ID: 20541759 doi:10.1016/j.jbiomech.2010.05.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Needham RNaemi RChockalingam N. Quantifying lumbar-pelvis coordination during gait using a modified vector coding technique. J Biomech. 2014;47(5):10201026. PubMed ID: 24485511 doi:10.1016/j.jbiomech.2013.12.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jarvis DNSmith JAKulig K. Trunk coordination in dancers and nondancers. J Appl Biomech. 2014;30(4):547554. PubMed ID: 24979816 doi:10.1123/jab.2013-0329

  • 14.

    Smith JASiemienski APopovich JM JrKulig K. Intra-task variability of trunk coordination during a rate-controlled bipedal dance jump. J Sports Sci. 2012;30(2):139147. PubMed ID: 22117102 doi:10.1080/02640414.2011.624541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    DeLeo ATDierks TAFerber RDavis IS. Lower extremity joint coupling during running: a current update. Clin Biomech. 2004;19(10):983991. doi:10.1016/j.clinbiomech.2004.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pohl MBMessenger NBuckley JG. Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait. Gait Posture. 2007;25(2):295302. PubMed ID: 16759862 doi:10.1016/j.gaitpost.2006.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dierks TADavis I. Discrete and continuous joint coupling relationships in uninjured recreational runners. Clin Biomech. 2007;22(5):581591. doi:10.1016/j.clinbiomech.2007.01.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Temprado JDella-Grasta MFarrell MLaurant M. A novice-expert comparison of (intra-limb) coordination subserving the volleyball serve. Hum Mov Sci. 1997;16(5):653676. doi:10.1016/S0167-9457(97)00014-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Wilson CSimpson SEvan Emmerik REHamill J. Coordination variability and skill development in expert triple jumpers. Sports Biomech. 2008;7(1):29. PubMed ID: 18341132 doi:10.1080/14763140701682983

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sides DWilson C. Intra-limb coordinative adaptations in cycling. Sports Biomech. 2012;11(1):19. PubMed ID: 22518940 doi:10.1080/14763141.2011.637118

  • 21.

    Preatoni EHamill JHarrison AJet al. Movement variability and skills monitoring in sports. Sports Biomech. 2013;12(2):6992. PubMed ID: 23898682 doi:10.1080/14763141.2012.738700

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wu YHLatash ML. The effects of practice on coordination. Exerc Sport Sci Rev. 2014;42(1):3742. PubMed ID: 24188981 doi:10.1249/JES.0000000000000002

  • 23.

    Bartlett RWheat JRobins M. Is movement variability important for sports biomechanists? Sports Biomech. 2007;6(2):224243. PubMed ID: 17892098 doi:10.1080/14763140701322994

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hamill Jvan Emmerik REAHeiderscheit BCLi L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297308. doi:10.1016/S0268-0033(98)90092-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Zuur ATLundbye-Jensen JLeukel Cet al. Contribution of afferent feedback and descending drive to human hopping. J Physiol. 2010;588(pt 5):799807. PubMed ID: 20064857 doi:10.1113/jphysiol.2009.182709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mechsner FKerzel DKnoblich GPrinz W. Perceptual basis of bimanual coordination. Nature. 2001;414:6973. PubMed ID: 11689944 doi:10.1038/35102060

  • 27.

    Needham RANaemi RChockalingam N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J Biomech. 2015;48(12):35063511. PubMed ID: 26303167 doi:10.1016/j.jbiomech.2015.07.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jarvis DNKulig K. Kinematic and kinetic analyses of the toes in dance movements. J Sports Sci. 2016;34(17):16121618. PubMed ID: 26691227 doi:10.1080/02640414.2015.1126672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Todorov E. Optimality principles in sensorimotor control. Nat Neurosci. 2004;7(9):907915. PubMed ID: 15332089 doi:10.1038/nn1309

  • 30.

    Todorov EJordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5(11):12261235. PubMed ID: 12404008 doi:10.1038/nn963

  • 31.

    Latash ML. The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res. 2012;217(1):15. PubMed ID: 22246105 doi:10.1007/s00221-012-3000-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Valero-Cuevas FJVenkadesan MTodorov E. Structured variability of muscle activations supports the minimal intervention principle of motor control. J Neurophysiol. 2009;102(1):5968. PubMed ID: 19369362 doi:10.1152/jn.90324.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 82 82 12
Full Text Views 5 5 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar