Stepping to an Auditory Metronome Improves Weight-Bearing Symmetry in Poststroke Hemiparesis

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Asymmetry in weight-bearing is a common feature in poststroke hemiparesis and is related to temporal asymmetry during walking. The aim of this study was to investigate the effect of an auditory cue for stepping in place on measures of temporal and weight-bearing asymmetry. A total of 10 community-dwelling adults (6 males and 4 females) with chronic poststroke hemiparesis performed 5 un-cued stepping trials and 5 stepping trials cued by an auditory metronome cue. A Vicon system was used to collect full body kinematic trajectories. Two force platforms were used to measure ground reaction forces. Step, swing, and stance times were used to calculate temporal symmetry ratios. Weight-bearing was assessed using the vertical component of the ground reaction force and center of mass–center of pressure separation at mid-stance. Weight-bearing asymmetry was significantly reduced during stepping with an auditory cue. Asymmetry values for step, swing, and stance times were also significantly reduced with auditory cueing. These findings show that auditory cueing when stepping in place produces immediate reductions in measures of temporal asymmetry and dynamic weight-bearing asymmetry.

Wright and Wing are with the School of Psychology, University of Birmingham, Birmingham, United Kingdom. Bevins is with the Institute of Sport & Exercise Sciences, University of Worcester, Worcester, United Kingdom. Pratt is with West Midlands Rehabilitation Centre, Birmingham Community Healthcare Trust, Birmingham, United Kingdom. Sackley is with the Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom.

Wright (dr.rachelwright@gmail.com) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Hendrickson JPatterson KKInness ELMcIlroy WEMansfield A. Relationship between asymmetry of quiet standing balance control and walking post-stroke. Gait Posture. 2014;39(1):177181. PubMed ID: 23877032 doi:10.1016/j.gaitpost.2013.06.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    de Kam DKamphuis JFWeerdesteyn VGeurts AC. The effect of weight-bearing asymmetry on dynamic postural stability in people with chronic stroke. Gait Posture. 2017;53:510. PubMed ID: 28061401 doi:10.1016/j.gaitpost.2016.12.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Chen HYWing AM. Independent control of force and timing symmetry in dynamic standing balance: implications for rehabilitation of hemiparetic stroke patients. Hum Mov Sci. 2012;31(6):16601669. PubMed ID: 22939846 doi:10.1016/j.humov.2012.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Briere ANadeau SLauziere SGravel D. Perception of weight-bearing and effort distribution during sit-to-stand in individuals post-stroke. Percept Mot Skills. 2013;117(1):12081223. PubMed ID: 24422346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kim CMEng JJ. Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture. 2003;18(1):2328. PubMed ID: 12855297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Balasubramanian CKNeptune RRKautz SA. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance. Clin Biomech. 2010;25(5):483490. PubMed ID: 20193972 doi:10.1016/j.clinbiomech.2010.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hsiao HGray VLCreath RABinder-Macleod SARogers MW. Control of lateral weight transfer is associated with walking speed in individuals post-stroke. J Biomech. 2017;60:7278. PubMed ID: 28687151 doi:10.1016/j.jbiomech.2017.06.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jorgensen LCrabtree NJReeve JJacobsen BK. Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone. 2000;27(5):701707. PubMed ID: 11062359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Marzolini SMcIlroy WTang Aet al. Predictors of low bone mineral density of the stroke-affected hip among ambulatory individuals with chronic stroke. Osteoporos Int. 2014;25(11):26312638. PubMed ID: 25001986 doi:10.1007/s00198-014-2793-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Myint PKPoole KEWarburton EA. Hip fractures after stroke and their prevention. QJM. 2007;100(9):539545. PubMed ID: 17693418 doi:10.1093/qjmed/hcm067

  • 11.

    Nolan LWit ADudzinski KLees ALake MWychowañski M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture. 2003;17(2):142151. PubMed ID: 12633775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Norvell DCCzerniecki JMReiber GEMaynard CPecoraro JAWeiss NS. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees. Arch Phys Med Rehabil. 2005;86(3):487493. PubMed ID: 15759233 doi:10.1016/j.apmr.2004.04.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Patterson KKParafianowicz IDanells CJet al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2):304310. PubMed ID: 18226655 doi:10.1016/j.apmr.2007.08.142

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Patterson KKGage WHBrooks DBlack SEMcIlroy WE. Changes in gait symmetry and velocity after stroke: a cross-sectional study from weeks to years after stroke. Neurorehabil Neural Repair. 2010;24(9):783790. PubMed ID: 20841442 doi:10.1177/1545968310372091

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Thaut MHMcIntosh GCRice RR. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J Neurol Sci. 1997;151(2):207212. PubMed ID: 9349677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Platts MMRafferty DPaul L. Metabolic cost of over ground gait in younger stroke patients and healthy controls. Med Sci Sports Exerc. 2006;38(6):10411046. PubMed ID: 16775542 doi:10.1249/01.mss.0000222829.34111.9c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Patterson KKGage WHBrooks DBlack SEMcIlroy WE. Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture. 2010;31(2):241246. PubMed ID: 19932621 doi:10.1016/j.gaitpost.2009.10.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lewek MDBradley CEWutzke CJZinder SM. The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke. J Appl Biomech. 2014;30(1):3136. PubMed ID: 23677889 doi:10.1123/jab.2012-0208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rossignol SJones GM. Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalogr Clin Neurophysiol. 1976;41(1):8392. PubMed ID: 58771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Grahn JABrett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci. 2007;19(5):893906. PubMed ID: 17488212 doi:10.1162/jocn.2007.19.5.893

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wright RLSpurgeon LCElliott MT. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction. Front Hum Neurosci. 2014;8:724. PubMed ID: 25309397 doi:10.3389/fnhum.2014.00724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Roerdink MLamoth CJKwakkel Gvan Wieringen PCBeek PJ. Gait coordination after stroke: benefits of acoustically paced treadmill walking. Phys Ther. 2007;87(8):10091022. PubMed ID: 17553922 doi:10.2522/ptj.20050394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Thaut MHLeins AKRice RRet al. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial. Neurorehabil Neural Repair. 2007;21(5):455459. PubMed ID: 17426347 doi:10.1177/1545968307300523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wright RLBrownless SBPratt DSackley CMWing AM. Stepping to the beat: feasibility and potential efficacy of a home-based auditory-cued step training program in chronic stroke. Front Neurol. 2017;8:412. PubMed ID: 28878730 doi:10.3389/fneur.2017.00412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wright RLMasood AMacCormac ESPratt DSackley CMWing AM. Metronome-cued stepping in place after hemiparetic stroke: comparison of a one- and two-tone beat. ISRN Rehabil. 2013;2013:5. doi:10.1155/2013/157410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Woltring HJ. A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Advances Eng Software (1978). 1986;8(2):104113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Campanini IMerlo A. Reliability, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients. Gait Posture. 2009;30(2):127131. PubMed ID: 19428254 doi:10.1016/j.gaitpost.2009.03.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wright RLPeters DMRobinson PDWatt TNHollands MA. Older adults who have previously fallen due to a trip walk differently than those who have fallen due to a slip. Gait Posture. 2015;41(1):164169. PubMed ID: 25455700 doi:10.1016/j.gaitpost.2014.09.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hollands KLPelton TATyson SFHollands MAvan Vliet PM. Interventions for coordination of walking following stroke: systematic review. Gait Posture. 2012;35(3):349359. PubMed ID: 22094228 doi:10.1016/j.gaitpost.2011.10.355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Reisman DSWityk RSilver KBastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130(pt. 7):18611872. PubMed ID: 17405765 doi:10.1093/brain/awm035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Malone LABastian AJ. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke. Neurorehabil Neural Repair. 2014;28(3):230240. PubMed ID: 24243917 doi:10.1177/1545968313505912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wutzke CJFaldowski RALewek MD. Individuals poststroke do not perceive their spatiotemporal gait asymmetries as abnormal. Phys Ther. 2015;95(9):12441253. PubMed ID: 25838335 doi:10.2522/ptj.20140482

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Chu VWHornby TGSchmit BD. Perception of lower extremity loads in stroke survivors. Clin Neurophysiol. 2015;126(2):372381. PubMed ID: 25097091 doi:10.1016/j.clinph.2014.06.047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Thaut MHKenyon GPSchauer MLMcIntosh GC. The connection between rhythmicity and brain function. IEEE Eng Med Biol. 1999;18(2):101108. PubMed ID: 10101675

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Garcia RKNelson AJLing WVan Olden C. Comparing stepping-in-place and gait ability in adults with and without hemiplegia. Arch Phys Med Rehabil. 2001;82(1):3642. PubMed ID: 11239284 doi:10.1053/apmr.2001.19012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Winstein CJGardner ERMcNeal DRBarto PSNicholson DE. Standing balance training: effect on balance and locomotion in hemiparetic adults. Arch Phys Med Rehabil. 1989;70(10):755762. PubMed ID: 2802955

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hornby TGStraube DSKinnaird CRet al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Topics Stroke Rehabil. 2011;18(4):293307. PubMed ID: 21914594 doi:10.1310/tsr1804-293

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Patterson KKNadkarni NKBlack SEMcIlroy WE. Gait symmetry and velocity differ in their relationship to age. Gait Posture. 2012;35(4):590594. PubMed ID: 22300728 doi:10.1016/j.gaitpost.2011.11.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Hausdorff JMLowenthal JHerman TGruendlinger LPeretz CGiladi N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci. 2007;26(8):23692375. PubMed ID: 17953624 doi:10.1111/j.1460-9568.2007.05810.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 81 81 27
Full Text Views 2 2 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar