Biomechanical Outcomes Due to Impact Loading in Runners While Looking Sideways

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

A stable gaze is necessary to optimize visual conditions during running. Head accelerations generally remain stable when looking in front; however, it is unclear if this response is similar when the head is turned sideways, and whether other adaptive strategies are present to maintain this stability. The purpose of this study, therefore, was to examine whether runners maintained stable head accelerations while gazing at fixed targets in front and to their sides. The authors collected biomechanical data from 13 runners as they directed their gaze to visual targets located in front, 45°, and 90° to the sides at a random sequence. Vertical head and tibial accelerations were the primary outcome measures, while vertical loading rate, footstrike angle, contact time, stride length, and stride rate were the secondary measures. A reduction in vertical head accelerations was found in the rightmost direction (P = .04), while an increase in vertical tibial accelerations was found on the same direction (P = .02). No other significant differences were observed for the other variables. The results of this study suggest that the tibia accommodated the increased shock to maintain head stability.

The authors are with Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

Mangubat (anamaria.mangubat@gmail.com) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Hamill JDerrick TRHolt KG. Shock attenuation and stride frequency during running. Hum Mov Sci. 1995;14(1):4560. doi:10.1016/0167-9457(95)00004-C

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Patla AE. Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997;5(1):5469. doi:10.1016/S0966-6362(96)01109-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Mercer JAVance JHreljac AHamill J. Relationship between shock attenuation and stride length during running at different velocities. Eur J Appl Physiol. 2002;87(4–5):403408. PubMed ID: 12172880 doi:10.1007/s00421-002-0646-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Crowell HPMilner CEHamill JDavis IS. Reducing impact loading during running with the use of real-time visual feedback. J Orthop Sports Phys Ther. 2010;40(4):206213. PubMed ID: 20357417 doi:10.2519/jospt.2010.3166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kavanagh JBarrett RMorrison S. The role of the neck and trunk in facilitating head stability during walking. Exp Brain Res. 2006;172(4):454463. PubMed ID: 16489437 doi:10.1007/s00221-006-0353-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Latt MDMenz HBFung VSLord SR. Walking speed, cadence and step length are selected to optimize the stability of head and pelvis accelerations. Exp Brain Res. 2008;184(2):201209. PubMed ID: 17717650 doi:10.1007/s00221-007-1094-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Morrison SRussell DMKelleran KWalker ML. Bracing of the trunk and neck has a differential effect on head control during gait. J Neurophysiol. 2015;114(3):17731783. PubMed ID: 26180113 doi:10.1152/jn.00059.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Montgomery GAbt GDobson CSmith TDitroilo M. Tibial impacts and muscle activation during walking, jogging and running when performed overground, and on motorised and non-motorised treadmills. Gait Posture. 2016;49:120126. PubMed ID: 27400020 doi:10.1016/j.gaitpost.2016.06.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mercer JADevita PDerrick TRBates BT. Individual effects of stride length and frequency on shock attenuation during running. Med Sci Sports Exerc. 2003;35(2):307313. PubMed ID: 12569221 doi:10.1249/01.MSS.0000048837.81430.E7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gruber AHBoyer KADerrick TRHamill J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J Sport Health Sci. 2014;3(2):113121. doi:10.1016/j.jshs.2014.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Milner CEFerber RPollard CDHamill JDavis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323328. PubMed ID: 16531902 doi:10.1249/01.mss.0000183477.75808.92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Busa MALim Jvan Emmerik REHamill J. Head and tibial acceleration as a function of stride frequency and visual feedback during running. PLoS ONE. 2016;11(6):0157297. PubMed ID: 27271850 doi:10.1371/journal.pone.0157297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Lucas-Cuevas ÁGPriego Quesada JIGooding JLewis MGCEncarnación-Martínez APerez-Soriano P. The effect of visual focus on spatio-temporal and kinematic parameters of treadmill running. Gait Posture. 2018;59:292297. PubMed ID: 28754421 doi:10.1016/j.gaitpost.2017.07.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lim JBusa MAvan Emmerik REAHamill J. Adaptive changes in running kinematics as a function of head stability demands and their effect on shock transmission. J Biomech. 2017;52:122129. PubMed ID: 28065472 doi:10.1016/j.jbiomech.2016.12.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Altman ARDavis IS. A kinematic method for footstrike pattern detection in barefoot and shod runners. Gait Posture. 2012;35(2):298300. PubMed ID: 22075193 doi:10.1016/j.gaitpost.2011.09.104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cheung RTRainbow MJ. Landing pattern and vertical loading rates during first attempt of barefoot running in habitual shod runners. Hum Mov Sci. 2014;34:120127. PubMed ID: 24556474 doi:10.1016/j.humov.2014.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Crowell HPDavis IS. Gait retraining to reduce lower extremity loading in runners. Clin Biomech. 2011;26(1):7883. PubMed ID: 20888675 doi:10.1016/j.clinbiomech.2010.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Zhang JHAn WWAu IPChen TLCheung RT. Comparison of the correlations between impact loading rates and peak accelerations measured at two different body sites: intra- and inter-subject analysis. Gait Posture. 2016;46:5356. PubMed ID: 27131177 doi:10.1016/j.gaitpost.2016.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lenoir MVan Overschelde SDe Rycke MMusch E. Intrinsic and extrinsic factors of turning preferences in humans. Neurosci Lett. 2006;393(2–3):179183. PubMed ID: 16257124 doi:10.1016/j.neulet.2005.09.061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Toussaint YFagard J. A counterclockwise bias in running. Neurosci Lett. 2008;442(1):5962. PubMed ID: 18598738 doi:10.1016/j.neulet.2008.06.056

  • 21.

    Siman-Tov TMendelsohn ASchonberg Tet al. Bihemispheric leftward bias in a visuospatial attention-related network. J Neurosci. 2007;27(42):1127111278. PubMed ID: 17942721 doi:10.1523/JNEUROSCI.0599-07.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Napier CCochrane CKTaunton JEHunt MA. Gait modifications to change lower extremity gait biomechanics in runners: a systematic review. Br J Sports Med. 2015;49(21):13821388. PubMed ID: 26105016 doi:10.1136/bjsports-2014-094393

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Delgado TLKubera-Shelton ERobb RRHickman RWallmann HWDufek JS. Effects of foot strike on low back posture, shock attenuation, and comfort in running. Med Sci Sports Exerc. 2013;45(3):490496. PubMed ID: 23073217 doi:10.1249/MSS.0b013e3182781b2c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Agresta CBrown A. Gait retraining for injured and healthy runners using augmented feedback: a systematic literature review. J Orthop Sports Phys Ther. 2015;45(8):576584. PubMed ID: 26158882 doi:10.2519/jospt.2015.5823

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Clansey ACHanlon MWallace ESNevill ALake MJ. Influence of tibial shock feedback training on impact loading and running economy. Med Sci Sports Exerc. 2014;46(5):973981. PubMed ID: 24121245 doi:10.1249/MSS.0000000000000182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 63 63 12
Full Text Views 5 5 1
PDF Downloads 3 3 2
Altmetric Badge
PubMed
Google Scholar