Development and Assessment of a Low-Cost Clinical Gait Analysis System

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Clinically, measuring gait kinematics and ground reaction force (GRF) is useful to determine the effectiveness of treatment. However, it is inconvenient and expensive to maintain a laboratory-grade gait analysis system in most clinics. The purpose of this study was to validate a Wii Balance Board, Kinovea motion-tracking software, and a video camera as a portable, low-cost system, and overground gait analysis system. We validated this low-cost system against a multicamera Vicon system and research-grade force platform (Advanced Mechanical Technology, Inc). After validation trials with known weights and angles, 5 subjects walked across an instrumented walkway for multiple times (n = 8/subject). We collected vertical GRF and segment angles. Average GRF data from the 2 systems were similar, with peak GRF errors below 3.5%BW. However, variability in the balance board’s sampling rate led to large GRF errors early and late in stance, when the GRF changed rapidly. The thigh, shank, and foot angle measurements were similar between the single and multicamera, but the pelvis angle was far less accurate. The proposed system has the potential to provide accurate segment angles and peak GRF at low cost but does not match the accuracy of the multicamera system and force platform, in part because of the Wii Balance Board’s variable sampling rate.

Littrell is with Hanger Clinic, Birmingham, AL, USA. Littrell, Chang, and Selgrade are with the School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. Selgrade is also with the Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Selgrade (bpselgrade@gmail.com) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Farris DJSawicki GS. The mechanics and energetics of human walking and running: a joint level perspective. J R Soc Interface. 2012;9:110118. PubMed ID: 21613286 doi:10.1098/rsif.2011.0182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Toney MEChang Y-H. Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces. Exp Brain Res. 2013;231:433443. PubMed ID: 24081680 doi:10.1007/s00221-013-3708-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Selgrade BPChang Y-H. Locomotor control of limb forces switches from minimal intervention principle in early adaptation to noise reduction in late adaptation. J Neurophysiol. 2015;113:14511461. PubMed ID: 25475343 doi:10.1152/jn.00246.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Silverman AKFey NPPortillo Aet al. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture. 2008;28:602609. PubMed ID: 18514526 doi:10.1016/j.gaitpost.2008.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Landrenau LLWatts KHeitzman JEChilders WE. Lower limb muscle activity during forefoot and rearfoot strike running techniques. Int J Sports Phys Ther. 2014;9(7):888897. PubMed ID: 25540704

    • Search Google Scholar
    • Export Citation
  • 6.

    Clark RABryant APua Yet al. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture. 2010;31:307310. PubMed ID: 20005112 doi:10.1016/j.gaitpost.2009.11.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Rathinam CBateman APeirson JSkinner J. Observational gait assessment tools in paediatrics—a systematic review. Gait Posture. 2014;40:279285. PubMed ID: 24798609 doi:10.1016/j.gaitpost.2014.04.187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Eastlack MEArvidson JSnyder-Mackler LDanoff JVMcGarvey CL. Interrater reliability of videotaped observational gait analysis assessments. Phys Ther. 1991;71:465472. PubMed ID: 2034709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    MacKenzie EJJones ASBosse MJet al. Health-care costs associated with amputation or reconstruction of a limb-threatening injury. J Bone Joint Surg Am. 2007;89:16851692. PubMed ID: 17671005 doi:10.2106/JBJS.F.01350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bartlett HLTing LBingham J. Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture. 2014;39(1):224228. PubMed ID: 23910725 doi:10.1016/j.gaitpost.2013.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Clark RAMcGough RPaterson K. Reliability of an inexpensive and portable dynamic weight bearing assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture. 2011;34:288291. PubMed ID: 21570290 doi:10.1016/j.gaitpost.2011.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Holmes JJenkins MJohnson Aet al. Validity of the Nintendo Wii balance board for the assessment of standing balance in Parkinson’s disease. Clin Rehabil. 2012;27(4):361366. PubMed ID: 22960241 doi:10.1177/0269215512458684

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mhatre PVVilares IStibb SMet al. Wii fit balance board playing improves balance and gait in Parkinson disease. PM R. 2013;5:769777. PubMed ID: 23770422 doi:10.1016/j.pmrj.2013.05.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gil-Gomez JALlorens RAlcaniz MColomer C. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehab. 2011;8:30. PubMed ID: 21600066 doi:10.1186/1743-0003-8-30

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Imam BMiller WMcLauren Let al. Feasibility of the Nintendo WiiFit for improving walking in individuals with a lower limb amputation. SAGE Open Med. 2013;1:2050312113497942. PubMed ID: 26770676 doi:10.1177/2050312113497942

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Castelli LStocchi LPatrigliani MSellitto GGiuliani MProsperini L. We-Measure: toward a low-cost portable posturography for patients with multiple sclerosis using the commercial Wii Balance Board. J Neurol Sci. 2015;359:440444. PubMed ID: 26490321 doi:10.1016/j.jns.2015.10.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Clark RAHowells BFeller JWhitehead TWebster KE. Clinic-based assessment of weight-bearing asymmetry during squatting in people with anterior cruciate ligament reconstruction using Nintendo Wii Balance Boards. Arch Phys Med Rehabil. 2014;95:11561161. PubMed ID: 24642197 doi:10.1016/j.apmr.2014.02.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Abujaber SGillispie GMarmon AZeni J. Validity of the Nintendo Wii Balance Board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task. Gait Posture. 2015;41:676682. PubMed ID: 25715680 doi:10.1016/j.gaitpost.2015.01.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Yamamoto KMatsuzawa M. Validity of a jump training apparatus using Wii Balance Board. Gait Posture. 2013;38:132135. PubMed ID: 23219781 doi:10.1016/j.gaitpost.2012.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Koltermann JJGerber MBeck HMbek M. Validation of the HUMAC balance system in comparison with conventional force plates. Technologies. 2017;5:44. doi:10.3390/technologies5030044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kinovea Association. Kinovea Website. 2014. http://www.kinovea.org. Accessed June 2 2014.

    • Export Citation
  • 22.

    Davids JRRowan FDavis RB. Indications for orthoses to improve gait in children with cerebral palsy. J Am Acad Orthop Surg. 2007;15:178188. PubMed ID: 17341675 doi:10.5435/00124635-200703000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lin SSSabharwal SBibbo C. Orthotic and bracing principles in neuromuscular foot and ankle problems. Foot Ankle Clin. 2000;5(2):235264. PubMed ID: 11232229

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Huang HJKary AAhmed AA. CU Wii Balance Board project. University of Colorado Neuromechanics Lab. 2012. http://www.colorado.edu/intphys/neuromechanics/cu_wii.html. Accessed May 26 2014.

    • Search Google Scholar
    • Export Citation
  • 25.

    Galeano DBrunetti FTorricelli Det al. A tool for balance control training using muscle synergies and multimodal interfaces. Biomed Res Int. 2014;2014:565370. PubMed ID: 24982896 doi:10.1155/2014/565370

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Galeano DBrunetti FTorricelli Det al. A low cost platform based on FES and muscle synergies for postural control research and rehabilitation. Paper presented at: International Congress on Neurotechnology, Electronics and Informatics Conference; 2013:11. Vilamoura, UK

    • Export Citation
  • 27.

    Leach JMMancini MPeterka RJHayes TLHorak FB. Validating and calibrating the Nintendo Wii Balance Board to derive reliable center of pressure measures. Sensors. 2014;14:1824418267. PubMed ID: 25268919 doi:10.3390/s141018244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lewallen JMiedaner JAmyx SSherman J. Effects of three styles of custom ankle foot orthoses on the gait of stroke patients while walking on level and inclined surfaces. J Prosthet Orthot. 2010;22(2):7883. doi:10.1097/JPO.0b013e3181d84767

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Anouchi YSMcShane MKelly FElting JStiehl J. Range of motion in total knee replacement. Clin Orthop Relat Res. 1996;331:8792. PubMed ID: 8895623 doi:10.1097/00003086-199610000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 183 183 75
Full Text Views 9 9 1
PDF Downloads 10 10 1
Altmetric Badge
PubMed
Google Scholar