Reliability of Postural Sway Measures of Standing Balance Tasks

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The reliability of balance exercises performance in experimental and clinical studies has typically been confined to a small set of exercises. To advance the field of assessing balance exercise intensity, establishing the reliability of performance during a more diverse array of exercises should be undertaken. The purpose of this study was to investigate the test–retest reliability of postural sway produced during performance of 24 different balance tasks and to evaluate the reliability of different measures of postural sway. Sixty-two healthy subjects between the ages of 18 and 85 years (50% female and mean age = 55 [20] y) participated. Subjects were tested during 2 visits 1 week apart and performed 2 sets of the 24 randomized standing tasks per visit. The tasks consisted of combinations of the following factors: surface (firm and foam); vision (eyes open and eyes closed); stance (feet apart and semitandem); and head movement (no movement, yaw, and pitch). Angular position displacement, angular velocity, and linear acceleration postural sway in the pitch and roll planes were recorded by an inertial measurement unit. The postural sway measures demonstrated at fair to good test–retest reliability with few exceptions, and angular velocity measures demonstrated the greatest reliability. The between-visit reliability of 2 averaged trials was excellent for most tasks. The study indicates that the performance of most balance tasks used as part of balance rehabilitation is reliable and that quantitative assessment could be used to document change.

Alsubaie is with the Department of Physical Therapy and Health Rehabilitation, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia. Whitney and Sparto are with the Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA. Furman is with the Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA. Marchetti is with the Department of Physical Therapy, Duquesne University, Pittsburgh, PA, USA. Sienko is with the Departments of Mechanical Engineering and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

Alsubaie (Sfa5@pitt.edu) is corresponding author.
  • 1.

    Horak FB, Jones-Rycewicz C, Black FO, Shumway-Cook A. Effects of vestibular rehabilitation on dizziness and imbalance. Otolaryngol Head Neck Surg. 1992;106(2):175180. PubMed ID: 1738550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;(9):CD007146. PubMed ID: 22972103 doi:10.1002/14651858.CD007146.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C. Exercise for improving balance in older people. Cochrane Database Syst Rev. 2011;(11):CD004963. PubMed ID: 22071817 doi:10.1002/14651858.CD004963.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hillier SL, McDonnell M. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst Rev. 2011;(2):CD005397. PubMed ID: 21328277 doi:10.1002/14651858.CD005397.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Shepard NT, Telian SA. Programmatic vestibular rehabilitation. Otolaryngol Head Neck Surg. 1995;112(1):173182. PubMed ID: 7816453 doi:10.1016/S0194-5998(95)70317-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BES Test) to differentiate balance deficits. Phys Ther. 2009;89(5):484498. PubMed ID: 19329772 doi:10.2522/ptj.20080071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther. 1986;66(10):15481550. PubMed ID: 3763708. doi:10.1093/ptj/66.10.1548

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Whitney SL, Roche JL, Marchetti GF, et al. A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: a measure of balance. Gait Posture. 2011;33(4):594599. PubMed ID: 21333541 doi:10.1016/j.gaitpost.2011.01.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Marchetti GF, Bellanca J, Whitney SL, et al. The development of an accelerometer-based measure of human upright static anterior–posterior postural sway under various sensory conditions: test–retest reliability, scoring and preliminary validity of the Balance Accelerometry Measure (BAM). J Vestib Res. 2013;23(4–5):227235. PubMed ID: 24284603 doi:10.3233/VES-130490

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Holewski JJ, Stess RM, Graf PM, Grunfeld C. Aesthesiometry: quantification of cutaneous pressure sensation in diabetic peripheral neuropathy. J Rehabil Res Dev. 1988;25(2):110. PubMed ID: 3361455

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gabbard C, Hart S. A question of foot dominance. J Gen Psychol. 1996;123(4):289296. PubMed ID: 9042740 doi:10.1080/00221309.1996.9921281

  • 12.

    Hall CD, Herdman SJ. Reliability of clinical measures used to assess patients with peripheral vestibular disorders. J Neurol Phys Ther. 2006;30(2):7481. PubMed ID: 16796772 doi:10.1097/01.NPT.0000282571.55673.ed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rine RM, Schubert MC, Whitney SL, et al. Vestibular function assessment using the NIH Toolbox. Neurology. 2013;80(11 suppl 3):2531. PubMed ID: 23479540 doi:10.1212/WNL.0b013e3182872c6a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Muehlbauer T, Roth R, Bopp M, Granacher U. An exercise sequence for progression in balance training. J Strength Cond Res. 2012;26(2):568574. PubMed ID: 22067238 doi:10.1519/JSC.0b013e318225f3c4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Allum JH, Carpenter MG, Horslen BC, et al. Improving impaired balance function: real-time versus carry-over effects of prosthetic feedback. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:13141318. PubMed ID: 22254558 doi:10.1109/IEMBS.2011.6090309

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Le Clair K, Riach C. Postural stability measures: what to measure and for how long. Clin Biomech. 1996;11(3):176178. PubMed ID: 11415618 doi:10.1016/0268-0033(95)00027-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Blair S, Duthie G, Robertson S, Hopkins W, Ball K. Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. J Biomech. 2018;73:2432. PubMed ID: 29602475 doi:10.1016/j.jbiomech.2018.03.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Al-Amri M, Nicholas K, Button K, Sparkes V, Sheeran L, Davies JL. Inertial measurement units for clinical movement analysis: reliability and concurrent validity. Sensors (Basel). 2018;18(3):E719. PubMed ID: 29495600 doi:10.3390/s18030719

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dozza M, Chiari L, Horak FB. Audio-biofeedback improves balance in patients with bilateral vestibular loss. Arch Phys Med Rehabil. 2005;86(7):14011403. PubMed ID: 16003671 doi:10.1016/j.apmr.2004.12.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Fisher RA. Statistical Methods for Research Workers. 12th ed. Edinburgh, UK: Oliver and Boyd; 1954.

  • 21.

    Fleiss JL. The Design and Analysis of Clinical Experiments. New York, NY: Wiley; 1999.

  • 22.

    Haley SM, Fragala-Pinkham MA. Interpreting change scores of tests and measures used in physical therapy. Phys Ther. 2006;86(5):735743. PubMed ID: 16649896

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lafond D, Corriveau H, Hebert R, Prince F. Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people. Arch Phys Med Rehabil. 2004;85(6):896901. PubMed ID: 15179642 doi:10.1016/j.apmr.2003.08.089

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Benvenuti F, Mecacci R, Gineprari I, et al. Kinematic characteristics of standing disequilibrium: reliability and validity of a posturographic protocol. Arch Phys Med Rehabil. 1999;80(3):278287. PubMed ID: 10084435 doi:10.1016/S0003-9993(99)90138-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Swanenburg J, de Bruin ED, Favero K, Uebelhart D, Mulder T. The reliability of postural balance measures in single and dual tasking in elderly fallers and non-fallers. BMC Musculoskelet Disord. 2008;9:162. PubMed ID: 19068125 doi:10.1186/1471-2474-9-162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Rafal S, Janusz M, Wieslaw O, Robert S. Test–retest reliability of measurements of the center of pressure displacement in quiet standing and during maximal voluntary body leaning among healthy elderly men. J Hum Kinet. 2011;28:1523. PubMed ID: 23487011 doi:10.2478/v10078-011-0018-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ruhe A, Fejer R, Walker B. The test–retest reliability of centre of pressure measures in bipedal static task conditions—a systematic review of the literature. Gait Posture. 2010;32(4):436445. PubMed ID:20947353 doi:10.1016/j.gaitpost.2010.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Heebner NR, Akins JS, Lephart SM, Sell TC. Reliability and validity of an accelerometry based measure of static and dynamic postural stability in healthy and active individuals. Gait Posture. 2015;41(2):535539. PubMed ID: 25544692 doi:10.1016/j.gaitpost.2014.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Moe-Nilssen R. Test–retest reliability of trunk accelerometry during standing and walking. Arch Phys Med Rehabil. 1998;79(11):13771385. PubMed ID: 9821897 doi:10.1016/S0003-9993(98)90231-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lin D, Seol H, Nussbaum MA, Madigan ML. Reliability of COP-based postural sway measures and age-related differences. Gait Posture. 2008;28(2):337342. PubMed ID: 18316191 doi:10.1016/j.gaitpost.2008.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tjernstrom F, Fransson PA, Hafstrom A, Magnusson M. Adaptation of postural control to perturbations—a process that initiates long-term motor memory. Gait Posture. 2002;15(1):7582. PubMed ID: 11809583 doi:10.1016/S0966-6362(01)00175-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fisher ST. The Intra-Session and Inter-Session Reliability of Centre-of-Pressure Based Measures of Postural Sway Within a Normal Population. Auckland, New Zealand: UNITEC Institute of Technology; 2010.

    • Search Google Scholar
    • Export Citation
  • 33.

    Corriveau H, Hebert R, Prince F, Raiche M. Intrasession reliability of the “center of pressure minus center of mass” variable of postural control in the healthy elderly. Arch Phys Med Rehabil. 2000;81(1):4548. PubMed ID: 10638875

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 293 294 34
Full Text Views 43 43 0
PDF Downloads 17 17 0