Concurrent Validity of Depth-Sensing Cameras for Noncontact ACL Injury Screening During Side-Cut Maneuvers in Adolescent Athletes: A Preliminary Study

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Anterior cruciate ligament (ACL) injury is one of the most common knee injuries among adolescent athletes. Majority of the ACL injuries occur due to pivoting, sudden deceleration, and direction change without contact with any player. Preventive interventions can reduce risks of the ACL injury, thus developing a clinician friendly biomechanical assessment tool to identify athletes with such risk factors is crucial. In this study, the authors investigated the concurrent validity of a commercially available depth sensor, Microsoft Kinect, as a cost-effective alternative to the gold-standard 3-dimensional motion analysis systems in noncontact ACL screening for adolescent athletes during side-cut maneuvers. Study participants performed 45° side-cut maneuvers while collecting data from both systems concurrently. The sagittal and frontal plane kinematics were analyzed during the full stance phase and the first 20% of the stance (early deceleration). Absolute agreement (range: ICC = .767–.989) and consistency (range: ICC = .799–.992) were excellent for all measures except early deceleration frontal plane hip angle, which displayed good absolute agreement (ICC = .643) and consistency (ICC = .625). Findings showed that the Kinect has the potential to be an effective clinical assessment tool for sagittal and frontal plane trunk, hip, and knee kinematics during the side-cut maneuvers.

Eltoukhy, Oh, and Signorile are with the Department of Kinesiology and Sport Sciences, School of Education & Human Development, University of Miami, Coral Gables, FL, USA. Kuenze is with the Department of Kinesiology, College of Education, Michigan State University, East Lansing, MI, USA. Apanovitch is with the Department of Physical Therapy, Miller School of Medicine, University of Miami, Coral Gables, FL, USA. Butler is with Nicklaus Children’s Hospital, Miami Children’s Health System, Miami, FL, USA. Signorile is also with Center on Aging, Miller School of Medicine, University of Miami, Miami, FL, USA.

Eltoukhy (meltoukhy@miami.edu) is corresponding author.
  • 1.

    Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med. 2005;33(4):524–531. PubMed ID: 15722283 doi:10.1177/0363546504269937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am J Sports Med. 1995;23(6):694–701. PubMed ID: 8600737 doi:10.1177/036354659502300611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–2370. PubMed ID: 25086064 doi:10.1177/0363546514542796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–150. PubMed ID: 10874221 doi:10.5435/00124635-200005000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech. 2001;16(5):438–445. PubMed ID: 11390052 doi:10.1016/S0268-0033(01)00019-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Longitudinal evaluation of stair walking biomechanics in patients with ACL injury. Med Sci Sports Exerc. 2016;48(1):7–15. PubMed ID: 26225766 doi:10.1249/MSS.0000000000000741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Moksnes H, Engebretsen L, Risberg MA. Performance-based functional outcome for children 12 years or younger following anterior cruciate ligament injury: a two to nine-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2008;16(3):214–223. PubMed ID: 18157486 doi:10.1007/s00167-007-0469-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014;49(6):806–819. PubMed ID: 25232663 doi:10.4085/1062-6050-49.3.35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Brown TN, Palmieri-Smith RM, McLean SG. Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury. Br J Sports Med. 2009;43(13):1049–1056. PubMed ID: 19372596 doi:10.1136/bjsm.2008.055954

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Havens KL, Sigward SM. Cutting mechanics: relation to performance and anterior cruciate ligament injury risk. Med Sci Sports Exerc. 2015;47(4):818–824. PubMed ID: 25102291 doi:10.1249/MSS.0000000000000470

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kipp K, Brown TN, McLean SG, Palmieri-Smith RM. Decision making and experience level influence frontal plane knee joint biomechanics during a cutting maneuver. J Appl Biomech. 2013;29(6):756–762. PubMed ID: 23434635 doi:10.1123/jab.29.6.756

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Quatman CE, Hewett TE. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br J Sports Med. 2009;43(5):328–335. PubMed ID: 19372087 doi:10.1136/bjsm.2009.059139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930–935. PubMed ID: 8544031 doi:10.1002/jor.1100130618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Andrews JR, McLeod WD, Ward T, Howard K. The cutting mechanism. Am J Sports Med. 1977;5(3):111–121. PubMed ID: 860773 doi:10.1177/036354657700500303

  • 15.

    Cross MJ, Gibbs NJ, Bryant GJ. An analysis of the sidestep cutting manoeuvre. Am J Sports Med. 1989;17(3):363–366. PubMed ID: 2729486 doi:10.1177/036354658901700309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc. 2003;35(10):1745–1750. PubMed ID: 14523314 doi:10.1249/01.MSS.0000089346.85744.D9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37(1):124–129. PubMed ID: 15632678 doi:10.1249/01.MSS.0000150087.95953.C3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Imwalle LE, Myer GD, Ford KR, Hewett TE. Relationship between hip and knee kinematics in athletic women during cutting maneuvers: a possible link to noncontact anterior cruciate ligament injury and prevention. J Strength Cond Res. 2009;23(8):2223–2230. PubMed ID: 19826304 doi:10.1519/JSC.0b013e3181bc1a02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mclean S, Huang X, Su A, Van Den Bogert A. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. J Orthop Sports Phys. 2005;35(4):258–259. PubMed ID: 15342155 doi:10.1016/j.clinbiomech.2004.06.006

    • Search Google Scholar
    • Export Citation
  • 20.

    McLean SG, Neal RJ, Myers PT, Walters MR. Knee joint kinematics during the sidestep cutting maneuver: potential for injury in women. Med Sci Sports Exerc. 1999;31(7):959–968.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    James CR, Sizer PS, Starch DW, Lockhart TE, Slauterbeck J. Gender differences among sagittal plane knee kinematic and ground reaction force characteristics during a rapid sprint and cut maneuver. Res Q Exerc Sport. 2004;75(1):31–38. PubMed ID: 15532359 doi:10.1080/02701367.2004.10609131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Myer GD, Ford KR, Hewett TE. Tuck jump assessment for reducing anterior cruciate ligament injury risk. Athl Ther Today. 2008;13(5):39–44. PubMed ID: 19936042 doi:10.1123/att.13.5.39

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kristianslund E, Krosshaug T. Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening. Am J Sports Med. 2013;41(3):684–688. PubMed ID: 23287439 doi:10.1177/0363546512472043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nyman E, Armstrong CW. Real-time feedback during drop landing training improves subsequent frontal and sagittal plane knee kinematics. Clin Biomech. 2015;30(9):988–994. PubMed ID: 26144663 doi:10.1016/j.clinbiomech.2015.06.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ganapathi V, Plagemann C, Koller D, Thrun S. Real time motion capture using a single time-of-flight camera. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA; 2010.

    • Export Citation
  • 26.

    Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved Kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83. PubMed ID: 27721202 doi:10.1016/j.gaitpost.2016.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mentiplay BF, Perraton LG, Bower KJ, et al. Gait assessment using the Microsoft Xbox one Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J Biomech. 2015;48(10):2166–2170. PubMed ID: 26065332 doi:10.1016/j.jbiomech.2015.05.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Schmitz A, Ye M, Boggess G, Shapiro R, Yang R, Noehren B. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system. Gait Posture. 2015;41(2):694–698. PubMed ID: 25708833 doi:10.1016/j.gaitpost.2015.01.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Clark RA, Pua YH, Oliveira CC, et al. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–213. PubMed ID: 26009500 doi:10.1016/j.gaitpost.2015.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mok KM, Bahr R, Krosshaug T. Reliability of lower limb biomechanics in two sport-specific sidestep cutting tasks. Sports Biomech. 2018;17(2):157–167. PubMed ID: 28281390 doi:10.1080/14763141.2016.1260766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hartmann M, Kreuzpointner F, Schwirtz A, Haas J.-P. Improved accuracy with an optimized plug-in-gait protocol. Gait Posture. 2014;39:109. doi:10.1016/j.gaitpost.2014.04.150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech. 2013;46(15):2722–2725. PubMed ID: 24016679 doi:10.1016/j.jbiomech.2013.08011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    McLean SG, Myers PT, Neal RJ, Walters MR. A quantitative analysis of knee joint kinematics during the sidestep cutting maneuver. Implications for non-contact anterior cruciate ligament injury. Bull Hosp Jt Dis. 1998;57(1):30–38. PubMed ID: 9553700

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    McLean S, Su A, van den Bogert A. Gender differences in lower limb kinematics during execution of three dynamic sporting postures-implications for ACL injury. Paper presented at: Proceedings of the 14th European Society of Biomechanics Conference, 's-Hertogenbosch, The Netherlands; 2004.

    • Export Citation
  • 35.

    McLean SG, Lipfert SW, Van den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc. 2004;36(6):1008–1016. PubMed ID: 15179171 doi:10.1249/01.MSS.0000128180.51443.83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Wu G, Cavanagh PR. ISB recommendations for standardization in the reporting of kinematic data. J Biomech. 1995;28(10):1257–1261. PubMed ID: 8550644 doi:10.1016/0021-9290(95)00017-C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Woltring HJ. On optimal smoothing and derivative estimation from noisy displacement data in biomechanics. Hum Mov Sci. 1985;4(3):229–245. doi:10.1016/0167-9457(85)90004-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Kadaba MP, Ramakrishnan H, Wootten M. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383–392. PubMed ID: 2324857 doi:10.1002/jor.1100080310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Pagliari D, Pinto L. Calibration of Kinect for Xbox One and comparison between the two generations of Microsoft sensors. Sensors. 2015;15(11):27569–27589. PubMed ID: 26528979 doi:10.3390/s151127569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Anton H. Elementary Linear Algebra. Hoboken, NJ: John Wiley & Sons; 2010.

  • 41.

    Auvinet E, Multon F, Aubin CE, Meunier J, Raison M. Detection of gait cycles in treadmill walking using a Kinect. Gait Posture. 2015;41(2):722–725. PubMed ID: 25442670 doi:10.1016/j.gaitpost.2014.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Xu X, McGorry RW, Chou LS, Lin JH, Chang CC. Accuracy of the Microsoft Kinect™ for measuring gait parameters during treadmill walking. Gait Posture. 2015;42(2):145–151. PubMed ID: 26002604 doi:10.1016/j.gaitpost.2015.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Clark RA, Pua YH, Fortin K, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36(3):372–377. PubMed ID: 22633015 doi:10.1016/j.gaitpost.2012.03.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Zeni J, Richards J, Higginson J. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27:710–714. PubMed ID: 17723303 doi:10.1016/j.gaitpost.2007.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–578. PubMed ID: 10875418

  • 46.

    Thiebaut C, Roques S. Time-scale and time-frequency analyses of irregularly sampled astronomical time series. EURASIP J Appl Signal Processing. 2005;2005:2486–2499.

    • Search Google Scholar
    • Export Citation
  • 47.

    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–160. PubMed ID: 10501650 doi:10.1177/096228029900800204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Bunce C. Correlation, agreement, and Bland–Altman analysis: statistical analysis of method comparison studies. Am J Ophthalmol. 2009;148(1):4–6. PubMed ID: 19540984 doi:10.1016/j.ajo.2008.09.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–290. doi:10.1037/1040-3590.6.4.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Guess TM, Razu S, Jahandar A, Skubic M, Huo Z. Comparison of 3D joint angles measured with the kinect 2.0 skeletal tracker versus a marker-based motion capture system. J Appl Biomech. 2017;33(2):176–181. PubMed ID: 27918704 doi:10.1123/jab.2016-0107

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Tannous H, Istrate D, Benlarbi-Delai A, et al. A new multi-sensor fusion scheme to improve the accuracy of knee flexion kinematics for functional rehabilitation movements. Sensors. 2016;16(11):E1914. doi:10.3390/s16111914

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Eltoukhy M, Kelly A, Kim CY, Jun HP, Campbell R, Kuenze C. Validation of the Microsoft Kinect® camera system for measurement of lower extremity jump landing and squatting kinematics. Sports Biomech. 2016;15(1):89–102. PubMed ID: 26835547 doi:10.1080/14763141.2015.1123766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Ning X, Guo G. Assessing spinal loading using the Kinect depth sensor: a feasibility study. IEEE Sens J. 2013;13(4):1139–1140. doi:10.1109/JSEN.2012.2230252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7. PubMed ID: 28408157 doi:10.1016/j.medengphy.2017.03.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Nandy A, Chakraborty P. A new paradigm of human gait analysis with Kinect. Paper presented at: 8th International Conference on Contemporary Computing (IC3), Noida, India; 2015.

    • Export Citation
  • 56.

    Pfister A, West AM, Bronner S, Noah JA. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J Med Eng Technol. 2014;38(5):274–280. PubMed ID: 24878252 doi:10.3109/03091902.2014.909540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Gray AD, Willis BW, Skubic M, et al. Development and validation of a portable and inexpensive tool to measure the drop vertical jump using the Microsoft Kinect V2. Sports Health. 2017;9(6):537–544. PubMed ID: 28846505 doi:10.1177/1941738117726323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Stone EE, Butler M, McRuer A, Gray A, Marks J, Skubic M. Evaluation of the Microsoft Kinect for screening ACL injury. Paper presented at: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan; 2013.

    • PubMed
    • Export Citation
  • 59.

    Hewett TE, Ford KR, Xu YY, Khoury J, Myer GD. Utilization of ACL injury biomechanical and neuromuscular risk profile analysis to determine the effectiveness of neuromuscular training. Am J Sports Med. 2016;44(12):3146–3151. PubMed ID: 27474385 doi:10.1177/0363546516656373

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE. Mechanisms, prediction, and prevention of ACL injuries: cut risk with three sharpened and validated tools. J Orthop Res. 2016;34(11):1843–1855. PubMed ID: 27612195 doi:10.1002/jor.23414

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Sigward SM, Powers CM. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech. 2006;21(1):41–48. PubMed ID:16209900 doi:10.1016/j.clinbiomech.2005.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Smith HC, Vacek P, Johnson RJ, et al. Risk factors for anterior cruciate ligament injury: a review of the literature—part 1: neuromuscular and anatomic risk. Sports Health. 2012;4(1):69–78. PubMed ID: 23016072 doi:10.1177/1941738111428281

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17(1):38–42. PubMed ID: 17304004 doi:10.1097/JSM.0b013e3180305de8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Suzuki Y, Ae M, Takenaka S, Fujii N. Comparison of support leg kinetics between side-step and cross-step cutting techniques. Sports Biomech. 2014;13(2):144–153. PubMed ID: 25122999 doi:10.1080/14763141.2014.910264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    González A, Hayashibe M, Bonnet V, Fraisse P. Whole body center of mass estimation with portable sensors: using the statically equivalent serial chain and a Kinect. Sensors. 2014;14(9):16955–16971. PubMed ID: 25215943 doi:10.3390/s140916955

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    González A, Hayashibe M, Fraisse P. Estimation of the Center of Mass with Kinect and Wii balance board. Paper presented at: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal; 2012.

    • PubMed
    • Export Citation
  • 68.

    Abujaber S, Gillispie G, Marmon A, Zeni J. Validity of the Nintendo Wii Balance Board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task. Gait Posture. 2015;41(2):676–682. PubMed ID: 25715680 doi:10.1016/j.gaitpost.2015.01.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Chagdes JR, Rietdyk S, Jeffrey MH, Howard NZ, Raman A. Dynamic stability of a human standing on a balance board. J Biomech. 2013;46(15):2593–2602. PubMed ID: 24041491 doi:10.1016/j.jbiomech.2013.08.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Goble DJ, Cone BL, Fling BW. Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search”. J Neuroeng Rehabil. 2014;11(1):12. PubMed ID: 24507245 doi:10.1186/1743-0003-11-12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Huurnink A, Fransz DP, Kingma I, van Dieën JH. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech. 2013;46(7):1392–1395. PubMed ID: 23528845 doi:10.1016/j.jbiomech.2013.02.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Weaver TB, Ma C, Laing AC. Use of the nintendo Wii balance board for studying standing static balance control: technical considerations, force-plate congruency, and the effect of battery life. J Appl Biomech. 2017;33(1):48–55. PubMed ID: 27735224 doi:10.1123/jab.2015-0295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 99 99 19
Full Text Views 19 19 8
PDF Downloads 12 12 5