Regulation of Linear and Angular Impulse During the Golf Swing With Modified Address Positions

in Journal of Applied Biomechanics
View More View Less
  • 1 California Lutheran University
  • | 2 University of Southern California
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Golf shots off uneven terrain often require modifications in address position to complete the swing successfully. This study aimed to determine how golf players coordinate the legs to regulate linear and angular impulse (about an axis passing vertically through the center of mass) while modifying the lower-extremity address position during the swing. Nine highly skilled golf players performed swings with a 6-iron under the Normal, Rear Leg Up, and Target Leg Up conditions. Components of linear and angular impulse generated by the rear and target legs (resultant horizontal reaction force, resultant horizontal reaction force angle, and moment arm) were quantified and compared across the group and within a player (α = .05). Net angular impulse did not change between conditions. Target leg angular impulse was greater in the Target Leg Up condition than Rear Leg Up condition. Regulation of linear and angular impulse generation occurred while increasing stance width and redirecting resultant horizontal reaction forces to be more parallel to the target line under modified address positions. Net linear impulse perpendicular to the target was near 0 or slightly posterior. Net linear impulse parallel to the target was less toward the target in the Target Leg Up condition compared with Normal and Rear Leg Up conditions. These results indicate individuals utilized player-specific mechanisms to coordinate the legs and regulate impulse generation during the golf swing under modified address positions.

Peterson is with the Department of Exercise Science, California Lutheran University, Thousand Oaks, CA, USA. McNitt-Gray is with the Departments of Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.

Peterson (tjpeterson@callutheran.edu) is corresponding author.

Supplementary Materials

    • Supplementary Table (PDF 135 KB)
  • 1.

    Peterson TJ, Wilcox RR, McNitt-Gray JL. Angular impulse and balance regulation during the golf swing. J Appl Biomech. 2016;32(4):342349. PubMed ID: 26958870 doi:10.1123/jab.2015-0131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Langdown BL, Bridge MW, Li F. Address position variability in golfers of differing skill level. Int J Golf Sci. 2013;2:19. doi:10.1123/ijgs.2.1.1

  • 3.

    Wiseman F, Chatterjee S. Comprehensive analysis of golf performance on the PGA tour: 1990–2004. Percept Mot Skills. 2006;102:109117. PubMed ID: 16671607 doi:10.2466/pms.102.1.109-117

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Finley PS, Halsey JJ. Determinants of PGA tour success: an examination of relationships among performance, scoring, and earnings. Percept Mot Skills. 2004;98:11001106. PubMed ID: 15209327 doi:10.2466/pms.98.3.1100-1106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Dorsel TN, Rotunda RJ. Low scores, top 10 finishes, and big money: an analysis of professional golf association tour statistics and how these relate to overall performance. Percept Mot Skills. 2001;92:575585. PubMed ID: 11361324 doi:10.2466/pms.2001.92.2.575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    McNitt-Gray JL, Munaretto J, Zaferiou A, Requejo PS, Flashner H. Regulation of reaction forces during the golf swing. Sport Biomech. 2013;12(2):121131. PubMed ID: 23898685 doi:10.1080/14763141.2012.738699

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Zaferiou AM, Wilcox RR, McNitt-Gray JL. Modification of impulse generation during pirouette turns with increased rotational demands. J Appl Biomech. 2016;32(5):425432. PubMed ID: 27046934 doi:10.1123/jab.2015-0314

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zaferiou AM, Wilcox RR, McNitt-Gray JL. Modification of impulse generation during piqué turns with increased rotational demands. Hum Mov Sci. 2016;47:220230. PubMed ID: 27038006 doi:10.1016/j.humov.2016.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dixon PC, Stebbins J, Theologis T, Zavatsky AB. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children. J Biomech. 2014;47:37263733. PubMed ID: 25311452 doi:10.1016/j.jbiomech.2014.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mathiyakom W, McNitt-Gray JL. Regulation of angular impulse during fall recovery. J Rehabil Res Dev. 2008;45(8):12371247. PubMed ID: 19235123 doi:10.1682/JRRD.2008.02.0033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Yeates KH, Segal AD, Neptune RR, Klute GK. Balance and recovery on coronally-uneven and unpredictable terrain. J Biomech. 2016;49:27342740. PubMed ID: 27345107 doi:10.1016/j.jbiomech.2016.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mathiyakom W, McNitt-Gray JL, Requejo PS, Costa K. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints. Clin Biomech. 2005;20(1):105111. PubMed ID: 15567544 doi:10.1016/j.clinbiomech.2004.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Orendurff MS, Segal AD, Berge JS, Flick KC, Spanier D, Klute GK. The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. Gait Posture. 2006;23(1):106111. PubMed ID: 16311202 doi:10.1016/j.gaitpost.2004.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Segal AD, Orendurff MS, Czerniecki J, Schoen J, Klute GK. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task. Gait Posture. 2011;33(1):4147. PubMed ID: 20974535 doi:10.1016/j.gaitpost.2010.09.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Shimba T. Consequences of force platform studies. Nat Rehabil Res Bull Jpn. 1996;17:1723.

  • 16.

    Zatsiorsky VM. Wrench representation of the ground reaction force. In: L.D. Robertson, A. Stahl eds. Kinetics of Human Motion. Champaign, IL: Human Kinetics Publishers; 2002:4348.

    • Search Google Scholar
    • Export Citation
  • 17.

    King DL, Zatsiorsky VM. Extracting gravity line displacement from stabilographic recordings. Gait Posture. 1997;6(1):2738. doi:10.1016/S0966-6362(96)01101-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lenzi D, Cappello A, Chiari L. Influence of body segment parameters and modeling assumptions on the estimate of center of mass trajectory. J Biomech. 2003;36(9):13351341. PubMed ID: 12893042 doi:10.1016/S0021-9290(03)00151-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Holden JP, Cavanagh PR. The free moment of ground reaction in distance running and its changes with pronation. J Biomech. 1991;24(10):887897. PubMed ID: 1744147 doi:10.1016/0021-9290(91)90167-L

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Russell IM, Raina S, Requejo PS, Wilcox RR, Mulroy S, McNitt-Gray JL. Modifications in wheelchair propulsion technique with speed. Front Bioeng Biotechnol. 2015;3:171. PubMed ID: 26579513 doi:10.3389/fbioe.2015.00171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cliff N. Ordinal Methods for Behavioral Data Analysis. Mahwah, NJ: Lawrence Erlbaum Associates, Inc, Publishers; 1996.

  • 22.

    Neuhäuser M, Lösch C, Jöckel KH. The Chen–Luo test in case of heteroscedasticity. Comput Stat Data Anal. 2007;51(10):50555060. doi:10.1016/j.csda.2006.04.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hochberg Y. A sharper Bonferroni test for multiple tests of significance. Biometrika. 1988;75:800802. doi:10.1093/biomet/75.4.800

  • 24.

    Hochberg Y, Tamhane AC. Multiple Comparison Procedures. Hoboken, NJ: John Wiley & Sons, Inc; 1987.

  • 25.

    Wilcox R, Clark F. Robust multiple comparisons based on combined probabilities from independent tests. J Data Sci. 2015;13(1):4352.

  • 26.

    Barrentine SW, Fleisig GS, Johnson H. Ground reaction forces and torques of professional and amateur golfers. Sci Golf II Proc 1994 World Sci Congr Golf. 1994;1(1):3339.

    • Search Google Scholar
    • Export Citation
  • 27.

    Zatsiorsky VM, King DL. An algorithm for determining gravity line location from posturographic recordings. J Biomech. 1997;31(2):161164. PubMed ID: 9593210 doi:10.1016/S0021-9290(97)00116-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cochran A, Stobbs J. The Search for the Perfect Swing: An Account of the Golf Society of Great Britain Scientific Study. Philadelphia: J. B. Lippincott Company; 1968.

    • Search Google Scholar
    • Export Citation
  • 29.

    Peterson TJ. Chapter 9: Regulation of muscular control while regulating golf shot distance between clubs. In: Lower Extremity Control and Dynamics During the Golf Swing. [Dissertation]. 2017.

    • Search Google Scholar
    • Export Citation
  • 30.

    Peterson TJ. Chapter 8: Lower extremity joint control during the golf swing. In: Lower Extremity Control and Dynamics During the Golf Swing. [Dissertation]. 2017.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 730 481 37
Full Text Views 53 22 5
PDF Downloads 46 17 7