Two Novel Slip Training Methods Improve the Likelihood of Recovering Balance After a Laboratory-Induced Slip

in Journal of Applied Biomechanics
View More View Less
  • 1 Virginia Tech
Restricted access

Task-specific balance training is an approach to fall prevention that has the potential to reduce the number of slip-induced falls. However, a limitation of current task-specific training methods is that they require nontrivial financial and/or equipment resources. This pilot study evaluated the efficacy of 2 low-cost, low-tech methods for slip-recovery training in improving balance recovery ability. The 2 methods were as follows: (1) repeated unexpected slip training (UST), which involved repeated unexpected slips while walking (similar to current methods of task-specific slip-recovery training) and (2) volitional slip-recovery training (VST), which involved practicing a slip recovery response after volitionally stepping to induce a slip-like perturbation. A total of 36 young adults completed 1 training session (UST, VST, or control), followed by 1 unexpected, laboratory-induced slip while walking on the following day. Compared with controls, UST and VST resulted in a higher proportion of successful balance recoveries from the laboratory-induced slips. UST improved both proactive control and the reactive stepping response after slipping, whereas VST improved the ability to arrest the motion of the slipping foot. Based on these preliminary results, UST and VST may provide practical, cost-effective methods for slip-recovery training.

Allin is with the Department of Biomedical Engineering & Mechanics, Virginia Tech, Blacksburg, VA, USA. Nussbaum and Madigan are with the Grado Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, VA, USA.

Madigan (mlm@vt.edu) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 390 KB)
  • 1.

    Hu G, Baker SP. Trends in unintentional injury deaths, U.S., 1999–2005: age, gender, and racial/ethnic differences. Am J Prev Med. 2009;37(3):188194. PubMed ID: 19595555 doi:10.1016/j.amepre.2009.04.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Courtney TK, Sorock GS, Manning DP, Collins JW, Holbein-Jenny MA. Occupational slip, trip, and fall-related injuries—can the contribution of slipperiness be isolated? Ergonomics. 2001;44(13):11181137. PubMed ID: 11794761 doi:10.1080/00140130110085538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Timsina LR, Willetts JL, Brennan MJ, et al. Circumstances of fall-related injuries by age and gender among community-dwelling adults in the United States. PLoS ONE. 2017;12(5):0176561. PubMed ID: 28472065 doi:10.1371/journal.pone.0176561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Marigold DS, Bethune AJ, Patla AE. Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion. J Neurophysiol. 2003;89:17271737. PubMed ID: 12611998 doi:10.1152/jn.00683.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Cham R, Redfern MS. Lower extremity corrective reactions to slip events. J Biomech. 2001;34(11):14391445. PubMed ID: 11672718 doi:10.1016/S0021-9290(01)00116-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Redfern MS, Cham R, Gielo-Perczak K, et al. Biomechanics of slips. Ergonomics. 2001;44(13):11381166. PubMed ID: 11794762 doi:10.1080/00140130110085547

  • 7.

    Brodie MA, Okubo Y, Sturnieks DL, Lord SR. Optimizing successful balance recovery from unexpected trips and slips. J Biomech Sci Eng. 2018; advance online publication. doi:10.1299/jbse.17-00558

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Bhatt T, Pai YC. Generalization of gait adaptation for fall prevention: from moveable platform to slippery floor. J Neurophysiol. 2009;101(2):948957. PubMed ID: 19073804 doi:10.1152/jn.91004.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Yang F, Bhatt T, Pai YC. Generalization of treadmill-slip training to prevent a fall following a sudden (novel) slip in over-ground walking. J Biomech. 2013;46(1):6369. PubMed ID: 23141636 doi:10.1016/j.jbiomech.2012.10.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pai YC, Bhatt T, Yang F, Wang E. Perturbation training can reduce community-dwelling older adults’ annual fall risk: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2014;69(12):15861594 PubMed ID: 24966227 doi:10.1093/gerona/glu087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Liu J, Kim S. Effect of walking surface perturbation training on slip propensity and local dynamic stability. Work. 2012;41(suppl 1):33523354. PubMed ID:22317228 doi:10.3233/WOR-2012-0605-3352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Allin LJ, Wu X, Nussbaum MA, Madigan ML. Falls resulting from a laboratory-induced slip occur at a higher rate among individuals who are obese. J Biomech. 2016;49(5):678683. PubMed ID: 26897650 doi:10.1016/j.jbiomech.2016.01.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Troy KL, Grabiner MD. Recovery responses to surrogate slipping tasks differ from responses to actual slips. Gait Posture. 2006;24(4):441447. PubMed ID: 16412642 doi:10.1016/j.gaitpost.2005.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Parijat P, Lockhart TE. Effects of moveable platform training in preventing slip-induced falls in older adults. Ann Biomed Eng. 2012;40(5):11111121. PubMed ID: 22134467 doi:10.1007/s10439-011-0477-0.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Barnett ML, Ross D, Schmidt RA, Todd B. Motor skills learning and the specificity of training principle. Res Q. 1973;44(4):440447. PubMed ID: 4532277

  • 16.

    Marigold DS, Patla AE. Strategies for dynamic stability during locomotion on a slippery surface: effects of prior experience and knowledge. J Neurophysiol. 2002;88(1):339353. PubMed ID: 12091559 doi:10.1152/jn.00691.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cham R, Redfern MS. Changes in gait when anticipating slippery floors. Gait Posture. 2002;15(2):159171. PubMed ID: 11869910 doi:10.1016/S0966-6362(01)00150-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Saghaei M. An overview of randomization and minimization programs for randomized clinical trials. J Med Signals Sens. 2011;1(1):5561. PubMed ID: 22606659

  • 19.

    Godin G, Shephard R. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci. 1985;10(3):141146. PubMed ID: 4053261

  • 20.

    Yang F, Pai YC. Automatic recognition of falls in gait-slip training: harness load cell based criteria. J Biomech. 2011;44(12):22432249. PubMed ID: 21696744 doi:10.1016/j.jbiomech.2011.05.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    O’Connor CM, Thorpe SK, O’Malley MJ, Vaughan CL. Automatic detection of gait events using kinematic data. Gait Posture. 2007;25(3):469474. PubMed ID: 16876414 doi:10.1016/j.gaitpost.2006.05.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McMahon TA. Muscles, Reflexes, and Locomotion. Princeton, NJ: Princeton University Press; 1984.

  • 23.

    Beschorner KE, Albert DL, Redfern MS. Required coefficient of friction during level walking is predictive of slipping. Gait Posture. 2016;48(suppl C):256260. PubMed ID: 27367937 doi:10.1016/j.gaitpost.2016.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Yang F, Pai YC. Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults? J Biomech. 2014;47(16):38073812. PubMed ID: 25468302 doi:10.1016/j.jbiomech.2014.10.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Yang F, Anderson FC, Pai YC. Predicted threshold against backward balance loss following a slip in gait. J Biomech 2008;41(9):18231831. PubMed ID: 18538329 doi:10.1016/j.jbiomech.2008.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Moyer BE, Redfern MS, Cham R. Biomechanics of trailing leg response to slipping - evidence of interlimb and intralimb coordination. Gait Posture. 2009;29(4):565570. PubMed ID: 19196513 doi:10.1016/j.gaitpost.2008.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Qu X, Hu X, Lew FL. Differences in lower extremity muscular responses between successful and failed balance recovery after slips. Int J Indus Ergon. 2012;42(5):499504. doi:10.1016/j.ergon.2012.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Chambers AJ, Cham R. Slip-related muscle activation patterns in the stance leg during walking. Gait Posture. 2007;25(4):565572. PubMed ID: 16876417 doi:10.1016/j.gaitpost.2006.06.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Nazifi MM, Beschorner KE, Hur P. Association between slip severity and muscle synergies of slipping. Front Hum Neurosci. 2017;11:536. PubMed ID:29163111 doi:10.3389/fnhum.2017.00536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Yang F, Pai YC. Role of individual lower limb joints in reactive stability control following a novel slip in gait. J Biomech. 2010;43(3):397404. PubMed ID: 19896133 doi:10.1016/j.jbiomech.2009.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Grabiner MD, Crenshaw JR, Hurt CP, Rosenblatt NJ, Troy KL. Exercise-based fall prevention: can you be a bit more specific? Exerc Sport Sci Rev. 2014;42(4):161168. PubMed ID: 25062002 doi:10.1249/JES.0000000000000023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Field-Fote EC, Dietz V. Single joint perturbation during gait: preserved compensatory response pattern in spinal cord injured subjects. Clin Neurophysiol. 2007;118(7):16071616. PubMed ID: 17475549 doi:10.1016/j.clinph.2007.03.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Fitts PM, Posner MI. Human Performance. Belmont, CA: Brooks/Cole Pub. Co.; 1967.

  • 34.

    Fung L, Lam M. Effectiveness of a progressive stepping program on lower limb function in community dwelling older adults. J Exerc Sci Fitness. 2012;10(1):811. doi:10.1016/j.jesf.2012.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Shigematsu R, Okura T. A novel exercise for improving lower-extremity functional fitness in the elderly. Aging Clin Exp Res. 2006;18(3):242248. PubMed ID: 16804371 doi:10.1007/BF03324655

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1032 490 126
Full Text Views 93 13 0
PDF Downloads 40 16 0