Coordination Among Shank, Rearfoot, Midfoot, and Forefoot Kinematic Movement During Gait in Individuals With Hallux Valgus

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

An important step in the management of hallux valgus is the objective analysis of foot mechanics in dynamic conditions. However, the manner in which hallux valgus affects the foot motion is poorly understood. Moreover, hallux valgus deformity may affect foot intersegmental coordination patterns. The purpose of this study was to investigate the relative motion and intersegmental foot coordination patterns, considering the midfoot, during gait in individuals with hallux valgus. Fifteen females with hallux valgus and 13 females without hallux valgus were recruited in this study. Three-dimensional positional data during gait were collected using a motion capture system and analyzed using a multisegment foot model and an analysis software. Intersegmental foot coordination patterns were assessed using a modified vector-coding technique. In individuals with hallux valgus, the rearfoot was significantly more everted throughout stance, and forefoot motion during late stance was significantly increased. In intersegmental coordination patterns, individuals with hallux valgus exhibited excessive mobility of the rearfoot relative to the midfoot segment during midstance and increased antiphase motion between rearfoot and midfoot segments during late stance. Excessive rearfoot eversion and altered intersegmental coordination patterns between rearfoot and midfoot may decrease the proper rigidity of the foot and lead to forefoot hypermobility during late stance in individuals with hallux valgus.

Kawakami and Iwamoto are with the Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. Takahashi and Shinakoda are with the Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and the Center for Advanced Practice and Research of Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.

Shinkoda (biomec@hiroshima-u.ac.jp) is corresponding author.
  • 1.

    Yamamoto Y, Yamaguchi S, Muramatsu Y, et al. Quality of life in patients with untreated and symptomatic hallux valgus. Foot Ankle Int. 2016;37(11):11711177. PubMed ID: 27344052 doi:10.1177/1071100716655433

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Coughlin MJ, Jones CP. Hallux valgus: demographics, etiology, and radiographic assessment. Foot Ankle Int. 2007;28(7):759777. PubMed ID: 17666168 doi:10.3113/FAI.2007.0759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Galica AM, Hagedorn TJ, Dufour AB, et al. Hallux valgus and plantar pressure loading: the Framingham foot study. J Foot Ankle Res. 2013;6(1):42. PubMed ID: 24138804 doi:10.1186/1757-1146-6-42

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Nguyen US, Hillstrom HJ, Li W, et al. Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston Study. Osteoarthritis Cartilage. 2010;18(1):4146. PubMed ID: 19747997 doi:10.1016/j.joca.2009.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Buldt AK, Murley GS, Levinger P, Menz HB, Nester CJ, Landorf KB. Are clinical measures of foot posture and mobility associated with foot kinematics when walking? J Foot Ankle Res. 2015;8:63. PubMed ID: 26604987 doi:10.1186/s13047-015-0122-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Deschamps K, Birch I, Desloovere K, Matricali GA. The impact of hallux valgus on foot kinematics: a cross-sectional, comparative study. Gait Posture. 2010;32(1):102106. PubMed ID: 20451392 doi:10.1016/j.gaitpost.2010.03.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Waldecker U. Metatarsalgia in hallux valgus deformity: a pedographic analysis. J Foot Ankle Surg. 2002;41(5):300308. PubMed ID: 12400713 doi:10.1016/S1067-2516(02)80048-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wen J, Ding Q, Yu Z, Sun W, Wang Q, Wei K. Adaptive changes of foot pressure in hallux valgus patients. Gait Posture. 2012;36(3):344349. PubMed ID: 22555063 doi:10.1016/j.gaitpost.2012.03.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Glasoe WM, Nuckley DJ, Ludewig PM. Hallux valgus and the first metatarsal arch segment: a theoretical biomechanical perspective. Phys Ther. 2010;90(1):110120. PubMed ID: 19926679 doi:10.2522/ptj.20080298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Menz HB, Lord SR. Gait instability in older people with hallux valgus. Foot Ankle Int. 2005;26(6):483489. PubMed ID: 15960916 doi:10.1177/107110070502600610

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR. Gait, balance and plantar pressures in older people with toe deformities. Gait Posture. 2011;34(3):347351. PubMed ID: 21700464 doi:10.1016/j.gaitpost.2011.05.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Shih KS, Chien HL, Lu TW, Chang CF, Kuo CC. Gait changes in individuals with bilateral hallux valgus reduce first metatarsophalangeal loading but increase knee abductor moments. Gait Posture. 2014;40(1):3842. PubMed ID: 24637011 doi:10.1016/j.gaitpost.2014.02.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Abuzzahab FS, Harris GF, Kidder SM. A kinetic model of the foot and ankle. Gait Posture. 1997;5(2):148153. doi:10.1016/S0966-6362(97)83366-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hwang S, Choi H, Cha S, Lee K, Kim Y. Multi-segment foot motion analysis on hallux valgus patients. Conf Proc IEEE Eng Med Biol Soc. 2005;7:68756877. PubMed ID: 17281854

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Canseco K, Rankine L, Long J, Smedberg T, Marks RM, Harris GF. Motion of the multisegmental foot in hallux valgus. Foot Ankle Int. 2010;31(2):146152. PubMed ID: 20132752 doi:10.3113/FAI.2010.0146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Glasoe WM, Allen MK, Saltzman CL. First ray dorsal mobility in relation to hallux valgus deformity and first intermetatarsal angle. Foot Ankle Int. 2001;22(2):98101. PubMed ID: 11249233 doi:10.1177/107110070102200203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dietze A, Bahlke U, Martin H, Mittlmeier T. First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot Ankle Int. 2013;34(1):124130. PubMed ID: 23386772 doi:10.1177/1071100712460217

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Singh D, Biz C, Corradin M, Favero L. Comparison of dorsal and dorsomedial displacement in evaluation of first ray hypermobility in feet with and without hallux valgus. Foot Ankle Surg. 2016;22(2):120124. PubMed ID: 27301732 doi:10.1016/j.fas.2015.05.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R, Giannini S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture. 2007;25(3):453462. PubMed ID: 16965916 doi:10.1016/j.gaitpost.2006.05.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Arnold JB, Mackintosh S, Jones S, Thewlis D. Repeatability of stance phase kinematics from a multi-segment foot model in people aged 50 years and older. Gait Posture. 2013;38(2):349351. PubMed ID: 23219780 doi:10.1016/j.gaitpost.2012.11.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Deschamps K, Staes F, Bruyninckx H, et al. Repeatability of a 3D multi-segment foot model protocol in presence of foot deformities. Gait Posture. 2012;36(3):635638. PubMed ID: 22591792 doi:10.1016/j.gaitpost.2012.04.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Takabayashi T, Edama M, Yokoyama E, Kanaya C, Kubo M. Quantifying coordination among the rearfoot, midfoot, and forefoot segments during running. Sports Biomech. 2018;17(1):1832. PubMed ID: 28632051 doi:10.1080/14763141.2016.1271447

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Buldt AK, Murley GS, Butterworth P, Levinger P, Menz HB, Landorf KB. The relationship between foot posture and lower limb kinematics during walking: a systematic review. Gait Posture. 2013;38(3):363372. PubMed ID: 23391750 doi:10.1016/j.gaitpost.2013.01.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dubbeldam R, Nester C, Nene AV, Hermens HJ, Buurke JH. Kinematic coupling relationships exist between non-adjacent segments of the foot and ankle of healthy subjects. Gait Posture. 2013;37(2):159164. PubMed ID: 22951211 doi:10.1016/j.gaitpost.2012.06.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Needham RA, Naemi R, Chockalingam N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J Biomech. 2015;48(12):35063511. PubMed ID: 26303167 doi:10.1016/j.jbiomech.2015.07.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chang R, Van Emmerik R, Hamill J. Quantifying rearfoot-forefoot coordination in human walking. J Biomech. 2008;41(14):31013105. PubMed ID: 18778823 doi:10.1016/j.jbiomech.2008.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Park HJ, Sim T, Suh SW, Yang JH, Koo H, Mun JH. Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. Eur Spine J. 2016;25(2):385393. PubMed ID: 25893334 doi:10.1007/s00586-015-3931-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Smith JA, Popovich JM Jr, Kulig K. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women. J Orthop Sports Phys Ther. 2014;44(7):525531. PubMed ID: 24816500 doi:10.2519/jospt.2014.5028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Samaan MA, Teng HL, Kumar D, et al. Acetabular cartilage defects cause altered hip and knee joint coordination variability during gait. Clin Biomech. 2015;30(10):12021209. PubMed ID: 26298706 doi:10.1016/j.clinbiomech.2015.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Perera AM, Mason L, Stephens MM. The pathogenesis of hallux valgus. J Bone Joint Surg Am. 2011;93(17):16501661. PubMed ID: 21915581 doi:10.2106/JBJS.H.01630

  • 31.

    Yukihide I, Noboru O, Hiroshi M, et al. Japanese Orthopaedic Association (JOA) Clinical Practice Guideline on the Management of Hallux Valgus. Tokyo: Nankodo; 2014.

    • Search Google Scholar
    • Export Citation
  • 32.

    Murley GS, Menz HB, Landorf KB. A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. J Foot Ankle Res. 2009;2:22. PubMed ID: 19575811 doi:10.1186/1757-1146-2-22

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lee SY, Hertel J. Arch height and maximum rearfoot eversion during jogging in 2 static neutral positions. J Athl Train. 2012;47(1):8390. PubMed ID: 22488234 doi:10.4085/1062-6050-47.1.83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Houck JR, Tome JM, Nawoczenski DA. Subtalar neutral position as an offset for a kinematic model of the foot during walking. Gait Posture. 2008;28(1):2937. PubMed ID: 17988870 doi:10.1016/j.gaitpost.2007.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hamill J, Haddad JM, McDermott WJ. Issues in quantifying variability from a dynamical systems perspective. J Appl Biomech. 2000;16:407418. doi:10.1123/jab.16.4.407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Martin H, Bahlke U, Dietze A, Zschorlich V, Schmitz KP, Mittlmeier T. Investigation of first ray mobility during gait by kinematic fluoroscopic imaging—a novel method. BMC Musculoskelet Disord. 2012;13:14. PubMed ID: 22316084 doi:10.1186/1471-2474-13-14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Allen MK, Cuddeford TJ, Glasoe WM, et al. Relationship between static mobility of the first ray and first ray, midfoot, and hindfoot motion during gait. Foot Ankle Int. 2004;25(6):391396. PubMed ID: 15215023 doi:10.1177/107110070402500605

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hicks JH. The mechanics of the foot. I. The joints. J Anat. 1953;87(4):345357. PubMed ID: 13117752

  • 39.

    Komeda T, Tanaka Y, Takakura Y, Fujii T, Samoto N, Tamai S. Evaluation of the longitudinal arch of the foot with hallux valgus using a newly developed two-dimensional coordinate system. J Orthop Sci. 2001;6(2):110118. PubMed ID: 11484094 doi:10.1007/s007760100056

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 274 274 55
Full Text Views 21 21 0
PDF Downloads 10 10 0