Generation of Linear Impulse During the Takeoff of the Long Jump

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Southern California
  • 2 University of California, Davis
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study investigates the effect of initial leg angle on horizontal jump performance. Eleven highly skilled male and female long jumpers (national and Olympic level) performed a series of horizontal jumps for distance. Within-jumper differences in initial leg angle, normalized horizontal and net vertical impulses, contact time, and average reaction force during the impact interval, postimpact interval, and in total were measured using high-speed video (240 or 300 Hz) and a force plate (1200 Hz). Pearson’s correlations, Winsorized correlations, and the HC4 method were used to determine significant correlations between variables (α = .05). Within-jumper analysis indicated that when jumpers initiate the takeoff phase with a larger leg angle they are able to generate significantly greater negative horizontal and positive net vertical impulses (n = 7). Increased impulse generation was the result of increased contact time (n = 5 of 7) and/or increased average reaction force (n = 4) during the impact interval (n = 3) and/or postimpact interval (n = 4), depending on the individual. Initial leg configuration at contact and individual specific impulse generation strategies are important to consider when determining how an athlete with initial momentum can increase impulse generation to jump for distance.

Ramos and McNitt-Gray are with the Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA. Ramey is with Department Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA. Wilcox is with the Department of Psychology, University of Southern California, Los Angeles, CA, USA. McNitt-Gray is with the Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.

McNitt-Gray (mcnitt@usc.edu) is corresponding author.
  • 1.

    Mathiyakom W, McNitt-Gray JL, Wilcox R. Lower extremity control and dynamics during backward angular impulse generation in backward translating tasks. Exp Brain Res. 2006;169(3):377388. PubMed ID: 16273396 doi:10.1007/s00221-005-0150-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Mathiyakom W, McNitt-Gray JL, Wilcox R. Lower extremity control and dynamics during backward angular impulse generation in forward translating tasks. J Biomech. 2006;39(6):9901000. PubMed ID: 15878165 doi:10.1016/j.jbiomech.2005.02.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):14021412. PubMed ID: 8933491 doi:10.1097/00005768-199611000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Moran KA, Wallace ES. Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Hum Mov Sci. 2007;26(6):824840. PubMed ID: 17928080 doi:10.1016/j.humov.2007.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hara M, Shibayama A, Takeshita D, Hay DC, Fukashiro S. A comparison of the mechanical effect of arm swing and countermovement on the lower extremities in vertical jumping. Hum Mov Sci. 2008;27(4):636648. PubMed ID: 18674837 doi:10.1016/j.humov.2008.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lees A, Vanrenterghem J, Clercq DD. Understanding how an arm swing enhances performance in the vertical jump. J Biomech. 2004;37(12):19291940. PubMed ID: 15519601 doi:10.1016/j.jbiomech.2004.02.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Walsh M, Arampatzis A, Schade F, Bruggemann GP. The effect of drop jump starting height and contact time on power, work performed, and moment of force. J Strength Cond Res. 2004;18(3):561566. PubMed ID: 15320658

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Flitney FW, Hirst DG. Cross-bridge detachment and sarcomere “give” during stretch of active frog’s muscle. J Physiol. 1978;276:449465. PubMed ID: 306433 doi:10.1113/jphysiol.1978.sp012246.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sugi H. Tension changes during and after stretch in frog muscle fibres. J Physiol. 1972;225(1):237253. PubMed ID: 4679722 doi:10.1113/jphysiol.1972.sp009935

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tiupa V, Aleshinksi S, Primakov I, Pereverzev A. The biomechanics of the movement of the body’s general center of mass during the long jump (Russian). Teor Prakt Fiz Kul. 1982:1114.

    • Search Google Scholar
    • Export Citation
  • 11.

    Yu B, Hay JG. Optimum phase ratio in the triple jump. J Biomech. 1996;29(10):12831289. PubMed ID: 8884473 doi:10.1016/0021-9290(96)00048-6

  • 12.

    Liu H, Yu B. Effects of phase ratio and velocity conversion coefficient on the performance of the triple jump. J Sports Sci. 2012;30(14):15291536. PubMed ID: 22880704 doi:10.1080/02640414.2012.713502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Costa K. Control and Dynamics during Horizontal Impulse Generation. Doctoral Dissertation, University of Southern California; 2004.

  • 14.

    Hay JG. The biomechanics of the long jump. Exerc Sport Sci Rev. 1986;14(1):401446.

  • 15.

    Bedi JF, Cooper JM. Take off in the long jump-Angular momentum considerations. J Biomech. 1977;10(9):541548. PubMed ID: 914877 doi:10.1016/0021-9290(77)90034-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Chow JW, Hay JG. Computer simulation of the last support phase of the long jump. Med Sci Sports Exerc. 2005;37(1):115123. PubMed ID: 15632677 doi:10.1249/01.MSS.0000150086.13664.32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hay JG. Citius, altius, longius (faster, higher, longer): the biomechanics of jumping for distance. J Biomech. 1993;26(suppl 1):721. doi:10.1016/0021-9290(93)90076-Q

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ramey M. Force relationship of the running long jump. Med Sci Sport. 1970;2(3):146151.

  • 19.

    Plessa EI, Rousanoglou EN, Boudolos KD. Comparison of the take-off ground reaction force patterns of the pole vault and the long jump. J Sports Med Phys Fitness. 2010;50(4):416421. PubMed ID: 21178927

    • Search Google Scholar
    • Export Citation
  • 20.

    Perttunen J, Kyrolainen H, Komi PV, Heinonen A. Biomechanical loading in the triple jump. J Sports Sci. 2000;18(5):363370. PubMed ID: 10855682 doi:10.1080/026404100402421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Venkata RK. Foot area and height of centre of gravity of individuals as determinants during the transition phase of step and jump of triple jumping. Br J Sports Med. 2010;44(14):25. doi:10.1136/bjsm.2010.078972.75

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Dziewiecki K, Mazur Z, Blajer W. Assessment of external and internal loads in the triple jump via inverse dynamics simulation. Biol Sport. 2013;30(2):103109. PubMed ID: 24744475 doi:10.5604/20831862.1044225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hay JG, Nohara H. Techniques used by elite long jumpers in preparation for takeoff. J Biomech. 1990;23(3):229239. PubMed ID: 2324119 doi:10.1016/0021-9290(90)90014-T

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Seyfarth A, Friedrichs A, Wank V, Blickhan R. Dynamics of the long jump. J Biomech. 1999;32:12591267. PubMed ID: 10569704 doi:10.1016/S0021-9290(99)00137-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Alexander RM. Optimum take-off techniques for high and long jumps. Philos Trans R Soc Lond B Biol Sci. 1990;329(1252):310. PubMed ID: 1976267 doi:10.1098/rstb.1990.0144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wilcox RR. Modern Statistics for the Social and Behavioral Sciences: A Practical Introduction. Boca Raton, FL: CRC Press Taylor & Francis Group; 2012.

    • Search Google Scholar
    • Export Citation
  • 27.

    Luhtanen P, Komi PV. Mechanical power and segmental contribution to force impulses in long jump take-off. Eur J Appl Physiol Occup Physiol. 1979;41(4):267274. PubMed ID: 499190 doi:10.1007/BF00429743

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Muraki Y, Ae M, Koyama H, Yokozawa T. Joint torque and power of the takeoff leg in the long jump. Int J Sport Heal Sci. 2008;6:2132. doi:10.5432/ijshs.6.21

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 477 404 29
Full Text Views 65 45 9
PDF Downloads 38 31 1