Validating Virtual Time to Contact With Home-Based Technology in Young and Older Adults

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Virtual time to contact (VTC) is a measure of postural stability that estimates the virtual time it would take to reach an individual’s stability boundary. This study aimed to validate VTC as measured by a depth sensor and determine whether VTC from the depth sensor distinguishes between older adult fallers and nonfallers compared with a force platform. VTC was assessed in 10 young and 20 older adults by having participants lean in a circular direction followed by 5 balance tests: eyes open, dual task, eyes open foam, eyes closed, and eyes closed foam. Spearman rank correlations and Bland–Altman plots were conducted to determine validity, and receiver operating characteristic curves were constructed to discriminate between fallers and nonfallers. Significant correlations were found in the dual task (P = .03), eyes open foam (P < .01), and eyes closed foam conditions (P = .05). The depth sensor discriminated between fallers and nonfallers in the eyes open (P = .02), dual task (P = .03), and eyes open foam conditions (P = .04). VTC was in agreement between the 2 devices, and VTC derived from a depth sensor can be used to discriminate between older adult fallers and nonfallers during challenging balance conditions.

Hsieh, Moon, and Sosnoff are with the Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA. Ramkrishnan and Ratnam are with Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA; and the Advanced Digital Sciences Center, Illinois at Singapore Pte Ltd., Singapore. Ratnam is also with the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. Ramkrishnan is currently with Robert Bosch (South East Asia) Pte Ltd., Singapore.

Sosnoff (jsosnoff@illinois.edu) is corresponding author.
  • 1.

    Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–1056. PubMed ID: 11494184 doi:10.1053/apmr.2001.24893

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Stel VS, Smit JH, Pluijm SM, Lips P. Consequences of falling in older men and women and risk factors for health service use and functional decline. Age Ageing. 2004;33(1):58–65. PubMed ID: 14695865 doi:10.1093/ageing/afh028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Orces CH, Alamgir H. Trends in fall-related injuries among older adults treated in emergency departments in the USA. Injury Prevention. 2014;20(6):421–423. doi:10.1136/injuryprev-2014-041268

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Pizzigalli L, Micheletti Cremasco M, Mulasso A, Rainoldi A. The contribution of postural balance analysis in older adult fallers: a narrative review. J Bodyw Mov Ther. 2016;20(2):409–417. PubMed ID: 27210860 doi:10.1016/j.jbmt.2015.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Shumway-Cook A, Woollacott MH. Motor Control: Theoryand Practical Applications. Philadelphia, PA: Lippincott Williams & Wilkins; 1995.

  • 6.

    de Waroquier-Leroy L, Bleuse S, Serafi R, et al. The functional reach test: strategies, performance and the influence of age. Ann Phys Rehabil Med. 2014;57(6–7):452–464. PubMed ID: 24928146 doi:10.1016/j.rehab.2014.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gill J, Allum J, Carpenter M, et al. Trunk sway measures of postural stability during clinical balance tests effects of age. J Gerontol A Biol Sci Med Sci. 2001;56(7):438–447. PubMed ID: 11445603 doi:10.1093/gerona/56.7.M438

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Murray M, Seireg A, Sepic SB. Normal postural stability and steadiness: quantitative assessment. J Bone Joint Surg Am. 1975;57(4):510–516. PubMed ID: 1141262 doi:10.2106/00004623-197557040-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Slobounov SM, Slobounova ES, Slobounov SM, Slobounova ES, Newell KM. Virtual time-to-collision and human postural control. J Mot Behav. 1997;29(3):263–281. PubMed ID: 12453785 doi:10.1080/00222899709600841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Slobounov SM, Moss SA, Slobounova ES, Newell KM. Aging and time to instability in posture. J Gerontol A Biol Sci Med Sci. 1998;53(1):B71–B80. PubMed ID: 9467425 doi:10.1093/gerona/53A.1.B71

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hertel J, Olmsted-Kramer LC, Challis JH. Time-to-boundary measures of postural control during single leg quiet standing. J Appl Biomech. 2006;22(1):67–73. PubMed ID: 16760569 doi:10.1123/jab.22.1.67

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van Wegen EE, van Emmerik RE, Riccio GE. Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci. 2002;21(1):61–84. PubMed ID: 11983434 doi:10.1016/S0167-9457(02)00077-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Cattaneo D, Ferrarin M, Jonsdottir J, Montesano A, Bove M. The virtual time to contact in the evaluation of balance disorders and prediction of falls in people with multiple sclerosis. Disabil Rehabil. 2012;34(6):470–477. PubMed ID: 21985076 doi:10.3109/09638288.2011.608144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kilby MC, Slobounov SM, Newell KM. Aging and the recovery of postural stability from taking a step. Gait Posture. 2014;40(4):701–706. PubMed ID: 25161010 doi:10.1016/j.gaitpost.2014.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Haibach PS, Slobounov SM, Slobounova ES, Newell KM. Virtual time-to-contact of postural stability boundaries as a function of support surface compliance. Exp Brain Res. 2007;177(4):471–482. PubMed ID: 17031683 doi:10.1007/s00221-006-0703-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mousavi Hondori H, Khademi M. A review on technical and clinical impact of Microsoft Kinect on physical therapy and rehabilitation. J Med Eng. 2014;2014:1–16. PubMed ID: 27006935 doi:10.1155/2014/846514

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech. 2013;46(15):2722–2725. PubMed ID: 24016679 doi:10.1016/j.jbiomech.2013.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Clark RA, Pua YH, Fortin K, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36(3):372–377. PubMed ID: 22633015 doi:10.1016/j.gaitpost.2012.03.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Yang Y, Pu F, Li Y, Li S, Fan Y, Li D. Reliability and validity of Kinect RGB-D sensor for assessing standing balance. IEEE Sensors J. 2014;14(5):1633–1638. doi:10.1109/JSEN.2013.2296509

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing. 2005;34(6):614–619. PubMed ID: 16267188 doi:10.1093/ageing/afi196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale. J Gerontol A Biol Sci Med Sci. 1995;50(1):M28–M34. PubMed ID: 7814786 doi:10.1093/gerona/50A.1.M28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Knopman DS, Roberts RO, Geda YE, et al. Validation of the telephone interview for cognitive status-modified in subjects with normal cognition, mild cognitive impairment, or dementia. Neuroepidemiology. 2010;34(1):34–42. PubMed ID: 19893327 doi:10.1159/000255464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kawamoto ALS, da Silva FSC. Depth-sensor applications for the elderly: a viable option to promote a better quality of life. IEEE Consumer Electronics Magazine. 2018;7(1):47–56. doi:10.1109/MCE.20172692800

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Siena FL, Byrom B, Watts P, Breedon P. Utilising the Intel RealSense camera for measuring health outcomes in clinical research. J Med Syst. 2018;42(3):53. PubMed ID: 29404692 doi:10.1007/s10916-018-0905-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Smith A. The serial sevens subtraction test. Arch Neurol. 1967;17(1):78–80. PubMed ID: 6026175 doi:10.1001/archneur.1967.00470250082008

  • 26.

    Hasson CJ, Van Emmerik REA, Caldwell GE. Predicting dynamic postural instability using center of mass time-to-contact information. J Biomech. 2008;41(10):2121–2129. PubMed ID: 18556003 doi:10.1016/j.jbiomech.2008.04.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Van Emmerik REA, Remelius JG, Johnson MB, Chung LH, Kent-Braun JA. Postural control in women with multiple sclerosis: effects of task, vision and symptomatic fatigue. Gait Posture. 2010;32(4):608–614. PubMed ID: 20943393 doi:10.1016/j.gaitpost.2010.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25(2):141–151. PubMed ID: 26110027 doi:10.11613/BM.2015.015

  • 29.

    Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr. 2011;48(4):277–287. PubMed ID: 21532099 doi:10.1007/s13312-011-0055-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8(4):283–298. PubMed ID: 112681 doi:10.1016/S0001-2998(78)80014-2

  • 31.

    Schloemer S, Cotter J, Jamison S, Chaudhari A. Time-to-contact demonstrates modulation of postural control during a dynamic lower extremity task. Gait Posture. 2013;38(4):658–662. PubMed ID: 23522669 doi:10.1016/j.gaitpost.2013.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sato K, Kuroki K, Saiki S, Nagatomi R. Improving walking, muscle strength, and balance in the elderly with an exergame using Kinect: a randomized controlled trial. Games Health J. 2015;4(3):161–167. PubMed ID: 26182059 doi:10.1089/g4h.2014.0057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Clark RA, Pua YH, Oliveira CC, et al. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–213. PubMed ID: 26009500 doi:10.1016/j.gaitpost.2015.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lim D, Kim C, Jung H, Jung D, Chun KJ. Use of the Microsoft Kinect system to characterize balance ability during balance training. Clin Interv Aging. 2015;10:1077–1083. PubMed ID: 26170647

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hsiao MY, Li CM, Lu IS, Lin YH, Wang TG, Han DS. An investigation of the use of the Kinect system as a measure of dynamic balance and forward reach in the elderly. Clin Rehabil. 2018;32(4):473–482. PubMed ID: 28879781 doi:10.1177/0269215517730117

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Soancatl Aguilar V, Lamoth CJC, Maurits NM, Roerdink J. Assessing dynamic postural control during exergaming in older adults: a probabilistic approach. Gait Posture. 2017;60:235–240. PubMed ID: 29288962 doi:10.1016/j.gaitpost.2017.12.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hof AL, Gazendam MG, Sinke WE. The condition for dynamic stability. J Biomech. 2005;38(1):1–8. PubMed ID: 15519333 doi:10.1016/j.jbiomech.2004.03.025

  • 38.

    Terry K, Stanley C, Damiano D. A new perspective on the walking margin of stability. J Appl Biomech. 2014;30(6):737–741. PubMed ID: 25185117 doi:10.1123/jab.2014-0089

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Da Gama A, Fallavollita P, Teichrieb V, Navab N. Motor rehabilitation using Kinect: a systematic Review. Games Health J. 2015;4(2):123–135. PubMed ID: 26181806 doi:10.1089/g4h.2014.0047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Shih MC, Wang RY, Cheng SJ, Yang YR. Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson’s disease: a single-blinded randomized controlled trial. J Neuroeng Rehabil. 2016;13(1):78. PubMed ID: 27568011 doi:10.1186/s12984-016-0185-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    van Diest M, Stegenga J, Wortche HJ, Postema K, Verkerke GJ, Lamoth CJ. Suitability of Kinect for measuring whole body movement patterns during exergaming. J Biomech. 2014;47(12):2925–2932. PubMed ID: 25173920 doi:10.1016/j.jbiomech.2014.07.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    van Diest M, Stegenga J, Wortche HJ, Roerdink JB, Verkerke GJ, Lamoth CJ. Quantifying postural control during exergaming using multivariate whole-body movement data: a self-organizing maps approach. PLoS ONE. 2015;10(7):e0134350. PubMed ID: 26230655 doi:10.1371/journal.pone.0134350

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Sun R, Paramathayalan VR, Ratnam R, Jain S, Morrow D, Sosnoff JJ. Design and development of an automated fall risk assessment system for older adults. In: Pak R, Mclaughlin AC, eds. Aging, Technology and Health. New York, NY: Elsevier; 2018:135–146.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 69 69 13
Full Text Views 6 6 1
PDF Downloads 1 1 0