Are Action Sport Cameras Accurate Enough for 3D Motion Analysis? A Comparison With a Commercial Motion Capture System

in Journal of Applied Biomechanics
View More View Less
  • 1 Universidade Federal de Viçosa
  • 2 CNRS – University of Poitiers – ENSMA
  • 3 Universidade Estadual de Campinas
  • 4 Politecnico di Milano
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The aim of this study was to assess the precision and accuracy of an action sport camera (ASC) system (4 GoPro Hero3+ Black) by comparison with a commercial motion capture (MOCAP) system (4 ViconMX40). Both systems were calibrated using the MOCAP protocol and the 3-dimensional (3D) markers coordinates of a T-shaped tool were reconstructed, concurrently. The 3D precision was evaluated by the differences in the reconstructed position using a Bland–Altman test, while accuracy was assessed by a rigid bar test (Wilcoxon rank sum). To examine the accuracy of the action sport camera with respect to the knee flexion angles, a jump and gait task were also examined using 1 subject (Wilcoxon rank sum). The ASC system provided a maximum error of 2.47 mm, about 10 times higher than the MOCAP (0.21 mm). The reconstructed knee flexion angles were highly correlated (r 2 > .99) and showed no significant differences between systems (<2.5°; P > .05). As expected, the MOCAP obtained better 3D precision and accuracy. However, the authors show such differences have little practical effect on reconstructed 3D kinematics.

Bernardina and Silvatti are with the Biomechanical Analysis Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Brazil. Monnet is with the Department of Biomechanics and Robotics, PPRIME Institute, CNRS – University of Poitiers – ENSMA, Poitiers, France. Pinto and de Barros are with the Faculty of Physical Education, Universidade Estadual de Campinas, São Paulo, Brazil. Cerveri is with Electronics, Information and Bioengineering Department, Politecnico di Milano, Milano, Italy.

Silvatti (amanda.silvatti@gmail.com) is corresponding author.
  • 1.

    Chiari L, Croce UD, Leardini A, Cappozzo A. Human movement analysis using stereophotogrammetry. Gait Posture. 2005;21(2):197211. PubMed ID: 15639399 doi:10.1016/j.gaitpost.2004.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Windolf M, Gotzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 system. J Biomech. 2008;41(12):27762780. PubMed ID: 18672241 doi:10.1016/j.jbiomech.2008.06.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Eichelberger P, Ferraro M, Minder U, et al. Analysis of accuracy in optical motion capture—a protocol for laboratory setup evaluation. J Biomech. 2016;49(10):20852088. PubMed ID: 27230474 doi:10.1016/j.jbiomech.2016.05.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Papić V, Zanchi V, Cecić M. Motion analysis system for identification of 3D human locomotion kinematics data and accuracy testing. Simul Model Pract Theory. 2004;12(2):159170. doi:10.1016/j.simpat.2003.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Barros RM, Menezes RP, Russomanno TG, et al. Measuring handball players trajectories using an automatically trained boosting algorithm. Comput Methods Biomech Biomed Engin. 2011;14(1):5363. PubMed ID: 21161798 doi:10.1080/10255842.2010.494602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lodovico ACA, Cerveri P, Ferrigno G, Barros RM. A novel video-based method using projected light to measure trunk volumes during respiration. Comput Methods Biomech Biomed Engin. 2011;14(8):707713. PubMed ID: 21128135 doi:10.1080/10255842.2010.493518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Silvatti AP, Sarro KJ, Cerveri P, Baroni G, Barros RML. A 3D kinematic analysis of breathing patterns in competitive swimmers. J Sports Sci. 2012;30(14):15511560. PubMed ID: 22897476 doi:10.1080/02640414.2012.713976

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Silvatti AP, Cerveri P, Telles T, Dias FA, Baroni G, Barros RM. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction. Comput Methods Biomech Biomed Engin. 2013;16(11):12401248. PubMed ID: 22435960 doi:10.1080/10255842.2012.664637

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dutta T. Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace. Appl Ergon. 2012;43(4):645649. PubMed ID: 22018839 doi:10.1016/j.apergo.2011.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Clark RA, Pua YH, Fortin K, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36(3):372377. PubMed ID: 22633015 doi:10.1016/j.gaitpost.2012.03.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pfister A, West AM, Bronner S, Noah JA. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J Med Eng Technol. 2014;38(5):274280. PubMed ID: 24878252 doi:10.3109/03091902.2014.909540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Silvatti AP, Dias FAS, Cerveri P, Barros RM. Comparison of different camera calibration approaches for underwater applications. J Biomech. 2012;45(6):11121116. PubMed ID: 22284990 doi:10.1016/j.jbiomech.2012.01.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bernardina GRD, Cerveri P, Barros RML, Marins JCB, Silvatti AP. Action sport cameras as an instrument to perform a 3D underwater motion analysis. PLoS ONE. 2016;11(8):0160490. PubMed ID: 27513846 doi:10.1371/journal.pone.0160490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bernardina GR, Cerveri P, Barros RM, Marins JC, Silvatti AP. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras. J Biomech. 2017;51:7782. PubMed ID: 27974154 doi:10.1016/j.jbiomech.2016.11.068

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cerveri P, Pedotti A, Borghese N. Combined evolution strategies for dynamic calibration of video-based measurement systems. IEEE Trans Evol Comput. 2001;5(3):271282. doi:10.1109/4235.930315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25(2):141151. PubMed ID: 26110027 doi:10.11613/BM.2015.015

  • 18.

    Sinclair J, Taylor PJ, Hobbs SJ. Digital filtering of three-dimensional lower extremity kinematics: an assessment. J Hum Kinet. 2013;39:2536. PubMed ID: 24511338 doi:10.2478/hukin-2013-0065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Vicon. Bonita. 2016. https://www.vicon.com/file/vicon/bonita-brochure.pdf. Accessed March, 2017.

    • Export Citation
  • 20.

    Jackson BE, Evangelista DJ, Ray DD, Hedrick TL. 3D for the people: multi-camera motion capture in the field with consumer-grade cameras and open source software. Biol Open. 2016;5(9):13341342. PubMed ID: 27444791 doi:10.1242/bio.018713

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Klein PJ, DeHaven JJ. Accuracy of three-dimensional linear and angular estimates obtained with the Ariel Performance Analysis System. Arch Phys Med Rehabil. 1995;76(2):183189. PubMed ID: 7848077 doi:10.1016/S0003-9993(95)80028-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Oberg T, Karsznia A, Ober K. Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev. 1993;30(2):210223. PubMed ID:8035350

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pietraszewski B, Winiarski S, Jaroszczuk S. Three-dimensional human gait pattern—reference data for normal men. Acta Bioeng Biomech. 2012;14(3):916. PubMed ID: 23140252 doi:10.5277/abb120302

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Xu X, McGorry RW, Chou LS, Lin JH, Chang CC. Accuracy of the Microsoft Kinect™ for measuring gait parameters during treadmill walking. Gait Posture. 2015;42(2):145151. PubMed ID: 26002604 doi:10.1016/j.gaitpost.2015.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Fuller J, Liu LJ, Murphy M, Mann R. A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum Mov Sci. 1997;16(2–3):219242. doi:10.1016/S0167-9457(96)00053-X

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 529 403 31
Full Text Views 26 21 2
PDF Downloads 9 8 1